A novel method for synthesizing microspheres from lignin or lignin acrylate derivatives through copolymerization with styrene (St) and divinylbenzene (DVB) has been developed. The copolymers were obtained by the emulsion-suspension polymerization with a constant molar ratio of DVB to St of 1:1 (w/w) and different amounts of lignin or its derivatives. The morphologies of the obtained materials were examined by scanning electron microscopy. Two types of lignin modifications were performed to introduce vinyl groups into the lignin molecules: modification with acrylic acid and modification with epichlorohydrin plus acrylic acid. The course of modification was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy. The thermal stability and degradation behavior of the obtained microspheres were investigated by thermogravimetric analysis, and the pore structure was characterized via nitrogen sorption experiments. Owing to the presence of specific functional groups and the well-developed pore structure, the obtained Lignin-St-DVB microspheres may have potential application as specific sorbents for the removal of phenolic pollutants from water, as demonstrated by the solid-phase extraction technique.
Highlights > A series of oxygen, nitrogen and phosphorus co-doped core-shell carbon sphere were developed. > The sample prepared at 800 °C with H 3 PO 4 activation showed the highest capacity and energy density. >The surface chemistry together with the well balanced porous structure of carbon electrode can greatly influence the electrochemical performance.
Sorption of phenolic compounds is a very complex process and many factors influence it. At the beginning, detailed chemical structure of phenols is presented with its consequence for physical properties, for example, values of melting and boiling points, solubility in water, pKa and Log P. Also influence of activating and deactivating substituents on the properties is explained. On this basis, interaction with the most frequently used sorbents, for example, chemically modified silicas, polymers and porous carbons, is described. Both sorbents characteristics including physical (porosity) and chemical properties (functional groups) and experimental conditions such as concentration of solutes, contact time, temperature, solvent effects and presence or absence of oxygen are taken into account. The explanations of irreversible adsorption and oxidative coupling phenomena are included. The mechanisms of phenolic compounds sorption are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.