Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46−RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.
Background Septic cardiomyopathy worsens the prognosis of critically ill patients. Clinical data suggest that interleukin‐1β (IL‐1β), activated by the NLRP3 inflammasome, compromises cardiac function. Whether or not deleting Nlrp3 would prevent cardiac atrophy and improve diastolic cardiac function in sepsis was unclear. Here, we investigated the role of NLRP3/IL‐1β in sepsis‐induced cardiomyopathy and cardiac atrophy. Methods Male Nlrp3 knockout (KO) and wild‐type (WT) mice were exposed to polymicrobial sepsis by caecal ligation and puncture (CLP) surgery (KO, n = 27; WT, n = 33) to induce septic cardiomyopathy. Sham‐treated mice served as controls (KO, n = 11; WT, n = 16). Heart weights and morphology, echocardiography and analyses of gene and protein expression were used to evaluate septic cardiomyopathy and cardiac atrophy. IL‐1β effects on primary and immortalized cardiomyocytes were investigated by morphological and molecular analyses. IonOptix and real‐time deformability cytometry (RT‐DC) analysis were used to investigate functional and mechanical effects of IL‐1β on cardiomyocytes. Results Heart morphology and echocardiography revealed preserved systolic (stroke volume: WT sham vs. WT CLP: 33.1 ± 7.2 μL vs. 24.6 ± 8.7 μL, P < 0.05; KO sham vs. KO CLP: 28.3 ± 8.1 μL vs. 29.9 ± 9.9 μL, n.s.; P < 0.05 vs. WT CLP) and diastolic (peak E wave velocity: WT sham vs. WT CLP: 750 ± 132 vs. 522 ± 200 mm/s, P < 0.001; KO sham vs. KO CLP: 709 ± 152 vs. 639 ± 165 mm/s, n.s.; P < 0.05 vs. WT CLP) cardiac function and attenuated cardiac (heart weight–tibia length ratio: WT CLP vs. WT sham: −26.6%, P < 0.05; KO CLP vs. KO sham: −3.3%, n.s.; P < 0.05 vs. WT CLP) and cardiomyocyte atrophy in KO mice during sepsis. IonOptix measurements showed that IL‐1β decreased contractility (cell shortening: IL‐1β: −15.4 ± 2.3%, P < 0.001 vs. vehicle, IL‐1RA: −6.1 ± 3.3%, P < 0.05 vs. IL‐1β) and relaxation of adult rat ventricular cardiomyocytes (time‐to‐50% relengthening: IL‐1β: 2071 ± 225 ms, P < 0.001 vs. vehicle, IL‐1RA: 564 ± 247 ms, P < 0.001 vs. IL‐1β), which was attenuated by an IL‐1 receptor antagonist (IL‐1RA). RT‐DC analysis indicated that IL‐1β reduced cardiomyocyte size (P < 0.001) and deformation (P < 0.05). RNA sequencing showed that genes involved in NF‐κB signalling, autophagy and lysosomal protein degradation were enriched in hearts of septic WT but not in septic KO mice. Western blotting and qPCR disclosed that IL‐1β activated NF‐κB and its target genes, caused atrophy and decreased myosin protein in myocytes, which was accompanied by an increased autophagy gene expression. These effects were attenuated by IL‐1RA. Conclusions IL‐1β causes atrophy, impairs contractility and relaxation and decreases deformation of cardiomyocytes. Because NLRP3/IL‐1β pathway inhibition attenuates cardiac atrophy and cardiomyopathy in sepsis, it could be useful to prevent septic cardiomyopathy.
Candida albicans colonizes human mucosa, including the gastrointestinal tract, as a commensal. In immunocompromised patients, C. albicans can breach the intestinal epithelial barrier and cause fatal invasive infections. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1; CD66a), CEACAM5 (CEA), and CEACAM6 (CD66c) are immunomodulatory receptors expressed on human mucosa and are recruited by bacterial and viral pathogens. Here we show for the first time that a fungal pathogen (i.e., C. albicans) also binds directly to the extracellular domain of human CEACAM1, CEACAM3, CEACAM5, and CEACAM6. Binding was specific for human CEACAMs and mediated by the N-terminal IgV-like domain. In enterocytic C2BBe1 cells, C. albicans caused a transient tyrosine phosphorylation of CEACAM1 and induced higher expression of membrane-bound CEACAM1 and soluble CEACAM6. Lack of the CEACAM1 receptor after short hairpin RNA (shRNA) knockdown abolished CXCL8 (interleukin-8) secretion by C2BBe1 cells in response to C. albicans. In CEACAM1-competent cells, the addition of recombinant soluble CEACAM6 reduced the C. albicans-induced CXCL8 secretion.
Allomones are widely used by insects to impede predation. Frequently these chemical stimuli are released from specialized glands. The larvae of Chrysomelina leaf beetles produce allomones in gland reservoirs into which the required precursors and also the enzymes are secreted from attached gland cells. Hence, the reservoirs can be considered as closed bio-reactors for producing defensive secretions. We used RNA interference (RNAi) to analyse in vivo functions of proteins in biosynthetic pathways occurring in insect secretions. After a salicyl alcohol oxidase was silenced in juveniles of the poplar leaf beetles, Chrysomela populi, the precursor salicyl alcohol increased to 98 per cent, while salicyl aldehyde was reduced to 2 per cent within 5 days. By analogy, we have silenced a novel protein annotated as a member of the juvenile hormone-binding protein superfamily in the juvenile defensive glands of the related mustard leaf beetle, Phaedon cochleariae. The protein is associated with the cyclization of 8-oxogeranial to iridoids (methylcyclopentanoid monoterpenes) in the larval exudates made clear by the accumulation of the acylic precursor 5 days after RNAi triggering. A similar cyclization reaction produces the secologanin part of indole alkaloids in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.