Benzoxazinoids (BXs) are secondary metabolites with diverse functions, but are primarily involved in protecting plants, mainly from the family Poaceae, against insects and fungal pathogens. Rye is a cereal crop that is highly resistant to biotic stresses. However, its susceptibility to brown rust caused by Puccinia recondita f. sp. secalis (Prs) is still a major problem affecting its commercial production. Additionally, the genetic and metabolic factors related to this disease remain poorly characterized. In this study, we investigated whether and to what extent the brown rust infection and the inoculation procedure affect the contents of specific BXs (HBOA, GDIBOA, DIBOA, GDIMBOA, DIMBOA, and MBOA) and the expression of genes related to BX (ScBx1-5, ScIgl, and Scglu). We revealed that treatments with water and a urediniospore suspension usually downregulate gene expression levels. Moreover, HBOA and DIBOA contents decreased, whereas the contents of the remaining metabolites increased. Specifically, the MBOA content increased more after the mock treatment than after the Prs treatment, whereas the increase in GDI-BOA and GDIMBOA levels was usually due to the Prs infection, especially at two of the most critical time-points, 17 and 24 h post-treatment. Therefore, GDIBOA and GDIMBOA are glucosides that are important components of rye defence responses to brown rust. Furthermore, along with MBOA, they protect rye against the stress associated with the inoculation procedure used in this study.
Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.
Benzoxazinoids (BXs) are secondary metabolites synthesized mainly by gramineous plants, including rye (Secale cereale L.), that play an important role in stress resistance and allelopathy. In the present work, the influence of cocultivation of rye with berseem clover (Trifolium alexandrinum L.) on the expression of BX synthesis‐regulating genes (ScBx1–ScBx5, ScIgl, and ScGT) and the content of six BXs (HBOA, DIBOA, GDIBOA, DIMBOA, GDIMBOA, and MBOA) in roots and the aerial portion of three rye inbred lines (ILs) (L318, D33, and D39) was investigated. Cocultivation of rye with berseem clover influenced its gene expression levels and BX contents. The response was strongly affected by rye genotype, plant part, time point, gene, and metabolite. The most frequently observed changes of gene expression concerned IL D33, aerial plant parts, the second time point (4 wk after germination), and ScBx3. For BX synthesis, the most frequently observed changes for IL D33 were in roots, the third time point (6 wk after germination), GDIBOA, and DIBOA. In 18.3% of cases, gene expression was correlated with BX synthesis. The coregulation of gene expression and BX synthesis in roots and aerial parts of rye plants affected by clover was observed relatively rarely. Cocultivation of rye with clover led, after 6 wk, to BX increases in roots of all tested ILs. Despite the lack of clearly universal response, the cocultivation of rye with clover may strengthen rye defense capability, at least against soil pathogens.
Two genes, Bx1 and Igl, both encoding indole-3-glycerol phosphate lyase (IGL), are believed to control the conversion of indole-3-glycerol phosphate (IGP) to indole. The first of these has generally been supposed to be regulated developmentally, being expressed at early stages of plant development with the indole being used in the benzoxazinoid (BX) biosynthesis pathway. In contrast, it has been proposed that the second one is regulated by stresses and that the associated free indole is secreted as a volatile. However, our previous results contradicted this. In the present study, we show that the ScIgl gene takes over the role of ScBx1 at later developmental stages, between the 42nd and 70th days after germination. In the majority of plants with silenced ScBx1 expression, ScIgl was either expressed at a significantly higher level than ScBx1 or it was the only gene with detectable expression. Therefore, we postulate that the synthesis of indole used in BX biosynthesis in rye is controlled by both ScBx1 and ScIgl, which are both regulated developmentally and by stresses. In silico and in vivo analyses of the promoter sequences further confirmed our hypothesis that the roles and modes of regulation of the ScBx1 and ScIgl genes are similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.