Summary In trees, dead and living cells of secondary xylem (wood) function collectively, rendering cell‐to‐cell communication challenging. Water and solutes are transported over long distances from the roots to the above‐ground organs via vessels, the main component of wood, and then radially over short distances to the neighboring cells. This enables proper functioning of trees and integrates whole‐plant activity. In this study, tracer loading, immunolocalization experiments and inhibitor assays were used to decipher the mechanisms enabling transport in wood of Acer pseudoplatanus (maple), Fraxinus excelsior (ash) and Populus tremula × tremuloides (poplar) trees. We show that tracer uptake from dead water‐conducting vessels, elements of the apoplasm, to living vessel‐associated cells (VACs) of the xylem parenchyma of the symplasm system proceeds via the endocytic pathway, including clathrin‐mediated and clathrin‐independent processes. These findings enhance our understanding of the transport pathways in complex wood tissue, providing experimental evidence of the involvement of VACs and endocytosis in radial uptake from vessels.
Drift of mutated sectors in sectorial or mericlinal plant chimeras has been interpreted as indirect evidence of initial impermanence at the apex. However, the same effect may result from mutation in noninitial cells positioned close to the vertex of the apical dome. Clonal analysis of the cell packets present in the superficial layer of spruce and magnolia apices provided the library of patterns suggesting that the position and the number of initial cells, and in some cases also the meristem axis inclination, may change over time. Multicellular clones originating from a single cell have been found in the geometric center of some apices, whereas in other apices the cellular center (where three or four clonal borders meet) did not correspond to the geome
Premise of the Study We used the model species Physcomitrella patens to examine chirality in moss gametophores. Chirality is manifested in the direction of consecutive apical cell divisions, cell plate configurations, and deviations of leaf connecting lines from the vertical course. However, the frequencies of chiral configurations of all these processes as well as their mutual dependence—especially in the case of gametophore branching—are not known. Other moss species were checked to determine the universality of our findings. Methods The gametophore structure of Physcomitrella patens grown in the laboratory under controlled conditions was investigated using light microscopy and compared with that of other moss species collected from their natural stands. Key Results In all investigated moss species, the tetrahedral apical cell exhibits either clockwise or counterclockwise consecutive divisions, and selection of this directionality in the primary axis is random. It is, however, related to cell plate configuration. If the plate is skewed, leaf‐producing segments arising from the apical cell cleavage exhibit circumferential rotation. Three parallel lines connecting the leaves deviate from a vertical course, but always in the same direction as that of leaf initiation; thus, the angular distance between consecutive leaves increases to >120°. Lateral branches are exclusively antidromous. Conclusions Gametophore chiral configuration appears to be useful in resolving problems of moss modular growth and branching. Morphological and anatomical evidence strongly suggests that an unknown direction‐sensing mechanism controls the development of moss axial organs. We propose that leaves are responsible for a horizontal gradient of sugar signals that develops along the gametophore circumference, thus influencing branching‐unit chirality.
Pleurozium schreberi and Hylocomium splendens are capable of internal transport but the pathway and conductivity differ due to differences in stem anatomy. These results help explain their varying desiccation tolerance and possibly their differing physiology and autecology and, ultimately, their impact on ecosystem functioning.
Phyllotactic diversity and developmental transitions between phyllotactic patterns are not fully understood. The plants studied so far, such as Magnolia, Torreya or Abies, are not suitable for experimental work, and the most popular model plant, Arabidopsis thaliana, does not show sufficient phyllotactic variability. It has been found that in common verbena (Verbena officinalis L.), a perennial, cosmopolitan plant, phyllotaxis differs not only between growth phases in primary transitions but also along the indeterminate inflorescence axis in a series of multiple secondary transitions. The latter are no longer associated with the change in lateral organ identity, and the sequence of phyllotactic patterns is puzzling from a theoretical point of view. Data from the experiments in silico, confronted with empirical observations, suggest that secondary transitions might be triggered by the cumulative effect of fluctuations in the continuously decreasing bract primordia size. The most important finding is that the changes in the primary vascular system, associated with phyllotactic transitions, precede those taking place at the apical meristem. This raises the question of the role of the vascular system in determining primordia initiation sites, and possibly challenges the autonomy of the apex. The results of this study highlight the complex relationships between various systems that have to coordinate their growth and differentiation in the developing plant shoot. Common verbena emerges from this research as a plant that may become a new model suitable for further studies on the causes of phyllotactic transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.