In this contribution we present a novel constrained clustering method, Constrained clustering with a complex cluster structure (C4s), which incorporates equivalence constraints, both positive and negative, as the background information. C4s is capable of discovering groups of arbitrary structure, e.g. with multi-modal distribution, since at the initial stage the equivalence classes of elements generated by the positive constraints are split into smaller parts. This provides a detailed description of elements, which are in positive equivalence relation. In order to enable an automatic detection of the number of groups, the cross-entropy clustering is applied for each partitioning process. Experiments show that the proposed method achieves significantly better results than previous constrained clustering approaches. The advantage of our algorithm increases when we are focusing on finding partitions with complex structure of clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.