Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases.
Existing collaborations in health have been common between developed countries (north) and low-income countries (south). Not only have such partnerships developed capacity in African institutions, they have also enhanced skills transfer and increased research. 1 Uganda and Mozambique are low-income countries (LICs) located in the eastern part of the African continent that have much in common. The health budgets of both countries are less than 15%, as documented in the Abuja Declaration by African heads of state and the World Health Organisation. 2 High infant and maternal mortality rates occur in these nations, as well as chronic diseases of poverty such as rheumatic heart disease (RHD) and endomyocardial fibrosis (EMF), among others. 3,4 We report here on an experience of collaboration between two institutions from these LICs using small budgets for mentorship in research and speciality training, with a focus on poverty-related cardiovascular diseases.
Kawasaki disease (KD) is a rare vascular disease that, if left untreated, can result in irreparable cardiac damage in children. While the symptoms of KD are well-known, as are best practices for treatment, the etiology of the disease and the factors contributing to KD outbreaks remain puzzling to both medical practitioners and scientists alike. Recently, a fungus known as Candida, originating in the farmlands of China, has been blamed for outbreaks in China and Japan, with the hypothesis that it can be transported over long ranges via different wind mechanisms. This paper provides evidence to understand the transport mechanisms of dust at different geographic locations and the cause of the annual spike of KD in Japan.Candida is carried along with many other dusts, particles or aerosols, of various sizes in major seasonal wind currents. The evidence is based upon particle categorization using the Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Ångström Exponent (AE), the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) attenuated backscatter and aerosol subtype, and the Aerosol Robotic Network’s (AERONET) derived volume concentration.We found that seasonality associated with aerosol size distribution at different geographic locations plays a role in identifying dominant abundance at each location. Knowing the typical size of the Candida fungus, and analyzing aerosol characteristics using AERONET data reveals possible particle transport association with KD events at different locations. Thus, understanding transport mechanisms and accurate identification of aerosol sources is important in order to understand possible triggers to outbreaks of KD. This work provides future opportunities to leverage machine learning, including state-of-the-art deep architectures, to build predictive models of KD outbreaks, with the ultimate goal of early forecasting and intervention within a nascent global health early-warning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.