Bulk gold (Au) is known to be chemically inactive. However, when the size of Au nanoparticles (Au NPs) decreases to close to 1 nm or sub-nanometer dimensions, these ultrasmall Au nanoclusters (Au NCs) begin to possess interesting physical and chemical properties and likewise spawn different applications when working with bulk Au or even Au NPs. In this study, we found that it is possible to confer antimicrobial activity to Au NPs through precise control of their size down to NC dimension (typically less than 2 nm). Au NCs could kill both Gram-positive and Gram-negative bacteria. This wide-spectrum antimicrobial activity is attributed to the ultrasmall size of Au NCs, which would allow them to better interact with bacteria. The interaction between ultrasmall Au NCs and bacteria could induce a metabolic imbalance in bacterial cells after the internalization of Au NCs, leading to an increase of intracellular reactive oxygen species production that kills bacteria consequently.
The use of nanomaterials has raised safety concerns, as their small size facilitates accumulation in and interaction with biological tissues. Here we show that exposure of endothelial cells to TiO 2 nanomaterials causes endothelial cell leakiness. This effect is caused by the physical interaction between TiO 2 nanomaterials and endothelial cells' adherens junction protein VE-cadherin. As a result, VE-cadherin is phosphorylated at intracellular residues (Y658 and Y731), and the interaction between VE-cadherin and p120 as well as b-catenin is lost. The resulting signalling cascade promotes actin remodelling, as well as internalization and degradation of VE-cadherin. We show that injections of TiO 2 nanomaterials cause leakiness of subcutaneous blood vessels in mice and, in a melanoma-lung metastasis mouse model, increase the number of pulmonary metastases. Our findings uncover a novel non-receptor-mediated mechanism by which nanomaterials trigger intracellular signalling cascades via specific interaction with VE-cadherin, resulting in nanomaterial-induced endothelial cell leakiness.
While the blood vessel is seldom the target tissue, almost all nanomedicine will interact with blood vessels and blood at some point of time along its life cycle in the human body regardless of their intended destination. Despite its importance, many bionanotechnologists do not feature endothelial cells (ECs), the blood vessel cells, or consider blood effects in their studies. Including blood vessel cells in the study can greatly increase our understanding of the behavior of any given nanomedicine at the tissue of interest or to understand side effects that may occur in vivo. In this review, we will first describe the diversity of EC types found in the human body and their unique behaviors and possibly how these important differences can implicate nanomedicine behavior. Subsequently, we will discuss about the protein corona derived from blood with foci on the physiochemical aspects of nanoparticles (NPs) that dictate the protein corona characteristics. We would also discuss about how NPs characteristics can affect uptake by the endothelium. Subsequently, mechanisms of how NPs could cross the endothelium to access the tissue of interest. Throughout the paper, we will share some novel nanomedicine related ideas and insights that were derived from the understanding of the NPs' interaction with the ECs. This review will inspire more exciting nanotechnologies that had accounted for the complexities of the real human body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.