Early diagnosis of active tuberculosis remains an elusive challenge. In addition, one third of the world’s population is latently infected with Mycobacterium tuberculosis (Mtb) and up to 10% of infected individuals develop tuberculosis (TB) in their lifetime. In this investigation, the incidence of urinary tuberculosis among renal patients was studied. Three hundreds urine samples were processed for detection of Mtb by Ziehl-Neelsen (ZN) smear examination, Lowenstein Jensen (LJ) medium, radiometric BACTEC460 system as well as polymerase chain reaction (PCR) followed by DNA Enzyme Immunoassay (DEIA) test. Out of 300 urine samples, 2 were positive by both ZN smears and LJ medium with incidence rate of 0.66 %, 3 positive samples by BACTEC460 culture system with incidence of 1%. PCR assay gave more positive results than smear and culture examination (i.e. 8 positive samples with incidence rate of 2.6%). The specificities were 25% for both ZN smears and LJ medium, 37.5% for BACTEC460 culture system, and 100% for PCR test, while sensitivities of all assays were 100%. Thus PCR is a rapid and sensitive method for the early diagnosis of urinary tuberculosis.
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton’s jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.
Pseudomonas aeruginosa is an organism commonly found in the environment and one of the most common causes of human urinary tract infections in developed and developing countries. The present study aimed to investigate the effect of five medicinal plant extracts on the isolated drug-resistant P. aeruginosa clinical isolates. A total of 100 urine samples were collected from Nagaa Hammadi and Qena General Hospitals and private medical analysis laboratories in Qena governorate, Upper Egypt. Samples were screened for the prevalence of UTI pathogens by biochemical tests, antibiotics sensitivity, detection of virulence, and antibiotic-resistant genes by using multiplex PCR. P. aeruginosa is by far the subdominant causative agent with a percentage of 14%. Clinical isolates were multidrug-resistant, containing blaTEM, blaSHV, toxA, lasB, pslA, and fliC resistant and virulence genes. Based on bioactivity, the ethanolic extract of clove (Syzygium aromaticum) was the most active extract among tested medicinal plants and had the maximum zone of inhibition sized 23 mm against tested bacteria. The results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) showed a high decrease of inhibition within a concentration range of (10 to 121.25 mg/mL and 20 to 30 mg/mL, respectively). Further, major compounds of oleic acid (27.22%), guanosine (8.91%), indole (6.83%), 1-eicosene (6.30%), and cis-10-nonadecenoic acid (5.37%) were determined among 12 bioactive compounds in the ethanolic extract of S. aromaticum using gas chromatography-mass spectrometry (GC-MS). These results indicated that the ethanolic extract of S. aromaticum is a promising antibacterial agent for further studies aiming to control bacterial infections including MDR bacteria and develop novel therapeutic alternatives for the treatment of UTI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.