UML diagrams describe different views of one piece of software. These diagrams strongly depend on each other and must therefore be consistent with one another, since inconsistencies between diagrams may be a source of faults during software development activities that rely on these diagrams. It is therefore paramount that consistency rules be defined and that inconsistencies be detected, analyzed and fixed. The relevant literature shows that authors typically define their own UML consistency rules, sometimes defining the same rules and sometimes defining rules that are already in the UML standard. The reason might be that no consolidated set of rules that are deemed relevant by authors can be found to date. The aim of our research is to provide a consolidated set of UML consistency rules and obtain a detailed overview of the current research in this area. We therefore followed a systematic procedure in order to collect and analyze UML consistency rules. We then consolidated a set of 116 UML consistency rules (avoiding redundant definitions or definitions already in the UML standard) that can be used as an important reference for UML-based software development activities, for teaching UML-based software development, and for further research.
This paper presents the Pattern Modeling Framework (PMF), a new metamodeling approach to pattern specification for MOF-compliant modeling frameworks and languages. Patterns need to be precisely specified before a tool can manipulate them, and though several approaches to pattern specification have been proposed, they do not provide the scalability and flexibility required in practice. PMF provides a pattern specification language called Epattern, which is capable of precisely specifying patterns in MOF-compliant metamodels. The language is defined as an extension to MOF by adding semantics inspired from the UML composite structure diagram. The language also comes with a graphical notation and a recommended iterative specification process. It also contains features to manage the complexity of specifying patterns and simplify their application and detection in user models. Most importantly, the language is implemented using state-of-the-art technologies that are heavily used by major modeling tool vendors, thus facilitating its adoption.
SysML is a modeling language used for systems analysis and design. While some domain‐specific analyses (e.g., finite element analysis) can only be specified in SysML when combined with other vocabulary, many common analyses can be modeled purely in SysML using its parametric and behavioral semantics. In this paper, we focus on one kind of analysis, which is requirements verification, and propose a new Executable System Engineering Method (ESEM) that automates it using executable SysML modeling patterns that involve structural, behavioral and parametric diagrams. The resulting analysis model becomes executable using a general purpose SysML execution engine. We present our method and demonstrate it on a running example derived from an industrial case study where we have verified the power requirements of a telescope system. It involves dynamic power roll‐ups in different operational scenarios and shows the automation capabilities of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.