Due to their unique physicochemical characteristics, palladium nanoparticles (Pd-NPs) have shown tremendous promise in biological applications. The biosynthesis of Pd-NPs employing Saudi propolis has been designed to be environmental, fast, controlled, and cost-effective. The formation and stability of biosynthesized Pd-NPs by Saudi propolis extract were proved by ultraviolet–visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Zeta potential analysis. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) findings show that the average particle size of Pd-NPs is between 3.14 and 4.62 nm, which is in quantum scale. The Saudi propolis enhanced the antimicrobial activity against B. subtilis, S. aureus, E. coli, K. pneumoniae, and C. albicans. Pd-NPs show effective anticancer activity against ductal carcinoma (MCF-7) with IC50 of 104.79 µg/mL.
In this work, a new porphyrin, 5,10,15,20-tetrakis{4-[((4-methoxyphenyl)acetyl)oxy]phenyl}porphyrin (H2TMAPP) (1), and its cobalt complex [CoII(TMAPP)] (2) were synthesized in good and quantitative yields, respectively.
Four of the coordination compounds of the general formula, [M(DPPP)(APY)(H2O) Cl2].xH2O, where M = Ni(II), Cu(II), Mn(II), and Fe(II) and x = 0, 1, or 2 molecules of H2O, DPPP = 1,3-bis(diphenylphosphino)propane, and APY = 2-aminopyridine, have been prepared and characterized. The structure of the complexes has been confirmed by elemental analysis, FT-IR, and UV-Vis spectral data. Thermal analysis (thermogravimetry, derivative thermogravimetry, and differential thermal studies) has been used to study the thermal decomposition stages. Biological activity of all synthesized complexes was tested against five bacterial strains and three fungal strains. Bacteria and fungi strains are common contaminants of the environment in Saudi Arabia, some of which are frequently reported from contaminated water, soil, and food.
Cobalt oxide nanoparticles (CoO NPs) were synthesized by the calcination method from the Co (II) complex which has the formula [Co(PVA)(P-ABA)(H2O)3], PVA = polyvinyl alcohol, and P-ABA = para-aminobenzoic acid. The calcination temperature was 550°C, and the products were characterized by element analysis, thermal analyses (TGA and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-Vis spectra, and scanning electron microscopy (SEM) techniques. The kinetic and thermodynamic parameters (∆H
∗
, ∆G
∗
, and ∆S
∗
) for the cobalt (II) complex are calculated. The charges been carried by the atoms cause dipole moment 10.53 and 3.84 debye and total energy 11.04 × 102 and 24.80 × 102k Cal mol−1 for the Co (II) complex and cobalt oxide, respectively. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline CoO nanoparticles. Scanning electron microscopy indicating that the crystallite size of cobalt oxide nanocrystals was in the range of 36–54 nm. Finally, the antimicrobial activity of cobalt oxide nanoparticles was evaluated using four bacterial strains and one fungal strain. Two strains of Gram-positive cocci (Staphylococcus aureus and Enterococcus faecalis), two strains of Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa), and one strain of yeast such as fungi (Candida albicans) were used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.