Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats. Front Ecol Environ 2022;
We studied vegetation change of a remnant barrens in southern Illinois over twenty‐five years. The study area was periodically burned between 1969 and 1993, but fire was excluded for a 16‐year period (1974–1989). During the study, the barrens supported a mixture of species whose preferred habitats ranged from prairie and open woodlands to closed forest communities. The herbaceous vegetation may be on a trajectory characterized by increasing dominance of woodland species and declining prairie species. Fire management temporarily reversed this trend, but it continued once fire was excluded. Reintroduction of prescribed burning in 1990–1993 altered the vegetation trajectory but not back toward a species composition comparable to that present on the site before cessation of fire management after 1973. Following interruption of prescribed burning, tree basal area more than doubled, and density showed a 67% increase between premanagement conditions in 1968 and 1988. Salix humilis (prairie willow) density had significant negative correlations with tree density and basal area. However, there was no consistency in response of shrub species on the site to the varied site conditions over time. Fire management on the site may not recover the historic barrens that occurred on the site. Nevertheless, consistent fire management will drive vegetation changes toward increasing abundance of prairie and open woodland species that would otherwise be lost without burning.
We studied the effects of hand weeding of second-year plants of the biennial garlic mustard (Alliaria petiolata) on first-year plants (seedlings) and native ground layer vegetation. Garlic mustard is a Eurasian species that has invaded deciduous forest ground layers in eastern North America. Treatments consisted of a control and an early or late weeding of second-year garlic mustard. The early treatment (early March) was applied before garlic mustard seeds had germinated and when most native species were dormant. The late treatment (mid-May) occurred after plants had bolted, flowering was occurring, and most native species and new garlic mustard seedlings were actively growing. Pre-treatment data were obtained in 2004 and treated and control plots were sampled in 2005, 2006, and 2007. No significant treatment effects were observed in 2004 or 2005. In 2006, mean cover of first-year plants was higher in the early weeding treatment than in the late weeding treatment and control. In 2007, mean cover of first-year garlic mustard was higher in the control than in either of the two weeding treatments. There were no significant treatment effects in any year on native vegetation cover, bare ground, or the five most abundant native species. Our data indicate that (1) late weeding of garlic mustard provided more effective control than early weeding because late weeding allows second-year plants to compete with garlic mustard seedlings for a longer period of time and (2) competition between first-and second-year plants is responsible for alternating dominance of first-year and second-year garlic mustard plants.
This study considers the importance of lake trout habitat as a factor determining persistent organochlorine (OC) concentration. Lake trout is a stenothermal, cold water species and sensitive to hypoxia. Thus, factors such as lake depth, thermal stratification, and phosphorus enrichment may determine not only which lakes can support lake trout but may also influence among-lake variability in lake trout population characteristics including bioaccumulation of OCs. A survey of 23 lakes spanning much of the natural latitudinal distribution of lake trout provided a range of lake trout habitat to test the hypothesis that lake trout with greater access to littoral habitat for feeding will have lower concentrations of OCs than lake trout that are more restricted to pelagic habitat. Using the delta13C stable isotope signature in lake trout as an indicator of influence of benthic littoral feeding, we found a negative correlation between lipid-corrected delta13C and sigmaPCB concentrations supporting the hypothesis that increasing accessto littoral habitat results in lower OCs in lake trout. The prominence of mixotrophic phytoplankton in lakes with more contaminated lake trout indicated the pelagic microbial food web may exacerbate the biomagnification of OCs when lake trout are restricted to pelagic feeding. A model that predicted sigmaPCB in lake trout based on lake area and latitude (used as proximate variables for proportion of littoral versus pelagic habitat and accessibility to littoral habitat respectively) explained 73% of the variability in sigmaPCBs in lake trout in the 23 lakes surveyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.