Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive soft-tissue malignancy with a poor overall survival and no effective therapeutic options. The tumor is believed to be dependent on the continued activity of the oncogenic EWS-WT1 transcription factor. However, the dependence of the tumor on EWS-WT1 has not been well established. In addition, there are no studies exploring the downstream transcriptional program across multiple cell lines. In this study, we have developed a novel approach to selectively silence EWS-WT1 without impacting either wild-type EWSR1 or WT1. We show a clear dependence of the tumor on EWS-WT1 in two different cell lines, BER and JN-DSCRT-1. In addition, we identify and validate important downstream target pathways commonly dysregulated in other translocation-positive sarcomas, including PRC2, mTOR, and TGFB. Surprisingly, there is striking overlap between the EWS-WT1 and EWS-FLI1 gene signatures, despite the fact that the DNA-binding domain of the fusion proteins, WT1 and FLI1, is structurally unique and classified as different types of transcription factors. This study provides important insight into the biology of this disease relative to other translocation-positive sarcomas, and the basis for the therapeutic targeting of EWS-WT1 for this disease that has limited therapeutic options.
Purpose: The successful clinical translation of compounds that target specific oncogenic transcription factors will require an understanding of the mechanism of target suppression to optimize the dose and schedule of administration. We have previously shown trabectedin reverses the gene signature of the EWS-FLI1 transcription factor. In this report, we establish the mechanism of suppression and use it to justify the reevaluation of this drug in the clinic in patients with Ewing sarcoma.Experimental Design: We demonstrate a novel epigenetic mechanism of trabectedin using biochemical fractionation and chromatin immunoprecipitation sequencing. We link the effect to drug schedule and EWS-FLI1 downstream target expression using confocal microscopy, qPCR, Western blot analysis, and cell viability assays. Finally, we quantitate target suppression within the three-dimensional architecture of the tumor in vivo using 18 F-FLT imaging.Results: Trabectedin evicts the SWI/SNF chromatinremodeling complex from chromatin and redistributes EWS-FLI1 in the nucleus leading to a marked increase in H3K27me3 and H3K9me3 at EWS-FLI1 target genes. These effects only occur at high concentrations of trabectedin leading to suppression of EWS-FLI1 target genes and a loss of cell viability. In vivo, low-dose irinotecan is required to improve the magnitude, penetrance, and duration of target suppression in the three-dimensional architecture of the tumor leading to differentiation of the Ewing sarcoma xenograft into benign mesenchymal tissue.Conclusions: These data provide the justification to evaluate trabectedin in the clinic on a short infusion schedule in combination with low-dose irinotecan with 18 F-FLT PET imaging in patients with Ewing sarcoma.
Rhabdoid tumor (RT) is a pediatric cancer characterized by the inactivation of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. Although this deletion is the known oncogenic driver, there are limited effective therapeutic options for these patients. Here we use unbiased screening of cell line panels to identify a heightened sensitivity of rhabdoid tumor to mithramycin and the second‐generation analogue EC8042. The sensitivity of MMA and EC8042 was superior to traditional DNA damaging agents and linked to the causative mutation of the tumor, SMARCB1 deletion. Mithramycin blocks SMARCB1‐deficient SWI/SNF activity and displaces the complex from chromatin to cause an increase in H3K27me3. This triggers chromatin remodeling and enrichment of H3K27ac at chromHMM‐defined promoters to restore cellular differentiation. These effects occurred at concentrations not associated with DNA damage and were not due to global chromatin remodeling or widespread gene expression changes. Importantly, a single 3‐day infusion of EC8042 caused dramatic regressions of RT xenografts, recapitulated the increase in H3K27me3, and cellular differentiation described in vitro to completely cure three out of eight mice.
Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage repair and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP constructs (inactive and automodified) with chromatin and DNA damage models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.