We report that a decrease in facilitative glucose transporter (GLUT1) expression and reduced glucose transport trigger apoptosis in the murine blastocyst. Inhibition of GLUT1 expression either by high glucose conditions or with antisense oligodeoxynucleotides significantly lowers protein expression and function of GLUT1 and as a result induces a high rate of apoptosis at the blastocyst stage. Similar to wild-type mice, embryos from streptozotocin-induced diabetic Bax ؊/؊ mice experienced a significant decrease in glucose transport compared with embryos from non-diabetic Bax ؊/؊ mice. However, despite this decrease, these blastocysts demonstrate significantly fewer apoptotic nuclei as compared with blastocysts from hyperglycemic wild-type mice. This decrease in preimplantation apoptosis correlates with a decrease in resorptions and malformations among the infants of the hyperglycemic Bax ؊/؊ mice versus the Bax ؉/؉ and ؉/؊ mice. These findings suggest that hyperglycemia by decreasing glucose transport acts as a cell death signal to trigger a BAX-dependent apoptotic cascade in the murine blastocyst. This work also supports the hypothesis that increased apoptosis at a blastocyst stage because of maternal hyperglycemia may result in loss of key progenitor cells and manifest as a resorption or malformation, two adverse pregnancy outcomes more common in diabetic women.In prior studies, it has been shown that maternal hyperglycemia results in down-regulation of the embryonic facilitative glucose transporters (GLUT), 1 GLUT1, GLUT2, and GLUT3, at the blastocyst stage of mouse development (1). Culturing two-cell embryos for 72 h in high concentrations of glucose (30 or 52 mM) likewise causes a decrease in the expression of these facilitative transporters at the mRNA and protein levels. This decrease in transporter expression leads to a significant drop in intraembryonic free glucose levels in blastocysts obtained from mice made hyperglycemic by streptozotocin injection or after culturing two-cell embryos from normal mice in high glucose. Blastocysts cultured under similar conditions also experience a 6-fold increase in expression of the proapoptotic protein BAX, as compared with controls and undergo increased apoptosis (2). Approximately 40% of all nuclei from embryos from hyperglycemic mothers showed evidence of terminal dUTP nick-end labeling or TUNEL-positive staining compared with less than 10% among controls. This apoptotic event requires BAX expression because blastocysts recovered from diabetic Bax Ϫ/Ϫ mice are resistant to the hyperglycemia-induced apoptosis. Similarly, the hyperglycemia-induced event is inhibited partially with either the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-FMK), or the ceramide synthase inhibitor, fumonisin B1, strongly suggesting that these apoptosis-associated pathways are involved. Apoptosis at this developmental stage may manifest later in pregnancy as a malformation or, if a significant cell loss occurs, as a miscarriage. Both these adverse pregnancy outcomes occur mor...
Glucose is an essential nutrient for mammalian cells. Emerging evidence suggests that glucose within the oocyte regulates meiotic maturation. However, it remains controversial as to whether, and if so how, glucose enters oocytes within cumulus-oocyte complexes (COCs). We used a fluorescent glucose derivative (6-NBDG) to trace glucose transport within live mouse COCs and employed inhibitors of glucose transporters (GLUTs) and gap junction proteins to examine their distinct roles in glucose uptake by cumulus cells and the oocyte. We showed that fluorescent glucose enters both cumulus-enclosed and denuded oocytes. Treating COCs with GLUT inhibitors leads to simultaneous decreases in glucose uptake in cumulus cells and the surrounded oocyte but no effect on denuded oocytes. Pharmacological blockade of of gap junctions between the oocyte and cumulus cells significantly inhibited fluorescent glucose transport to oocytes. Moreover, we find that both in vivo hyperglycemic environment and in vitro high-glucose culture increase free glucose levels in oocytes via gap junctional channels. These findings reveal an intercellular pathway for glucose transport into oocytes: glucose is taken up by cumulus cells via the GLUT system and then transferred into the oocyte through gap junctions. This intercellular pathway may partly mediate the effects of high-glucose condition on oocyte quality.
Preimplantation mouse embryos exposed to hyperglycemia, whether in vivo or in vitro, experience delayed development from the 2-cell to blastocyst stage. By comparing metabolites from embryos exposed to high vs. normal glucose conditions, a metabolic explanation for the delayed growth pattern was sought. Fertilized 1-cell embryos obtained from superovulated B5 x CBA F1 mice were cultured for 96 h in medium containing 2.8 mM glucose (C) or in medium with added glucose to give 10 mM, 30 mM, or 52 mM glucose (HG). After incubation, each embryo was quick-frozen and freeze-dried. Metabolites were assayed by the ultramicrofluorometric technique and enzymatic cycling to obtain measurable levels in single embryos. Embryos cultured in HG exhibited 7-fold higher intracellular glucose levels than those cultured in C (C: 2.25 +/- 0.6 vs. HG: 16.61 +/- 2.4 mmol/kg wet weight; p < 0.001; C, n = 9; HG, n = 16). This accumulation of glucose was dose-related and stage-dependent. Citrate (C: 1.07 +/- 0.14 vs. HG: 1.98 +/- 0.12; p < 0.001), sorbitol (C: 0.41 +/- 0.06 vs. HG: 0.57 +/- 0.03; p < 0.01), malate (C: 0.81 +/- 0.13 vs. HG: 1.72 +/- 0.17; p < 0.001), and fructose (C: 2.1 +/- 0.3 vs. HG: 5.3 +/- 0.6; p < 0.001) were all significantly higher in HG. Also, these metabolites were highest in the most delayed embryos. Glycogen and 6-phosphogluconate levels were not significantly different. In conclusion, intraembryonic levels of glucose, and polyol pathway and Krebs cycle metabolites are elevated and correspond to the degree of developmental delay. These findings suggest that a metabolic abnormality may be responsible for retarded development experienced by embryos exposed to high glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.