Caves are oligotrophic, dark and less-explored environments and are considered as sources of promising microbial strains in biotechnology. Hampoeil Cave is located in massive dolomite with thin bedded limestone in northwestern of Iran. In an isolation and screening program, various samples from soil, water, floor, wall and ceiling of Hampoeil cave and its invertebrates were collected. Four various treatments and 10 different isolation media were used for the isolation of the actinobacteria. Screening of the isolates for antimicrobial activity against 10 bacteria and fungi, 5 hydrolytic enzymes production and resistance to 5 heavy metals have been performed. Among 33 various samples, 76 actinobacteria from various genera, including Streptomyces, Micromonospora, Micrococcus, Kocuria and Corynebacterium were isolated. Eighty percent of the strains had one of the studied hydrolytic enzyme activity. At least one type of antimicrobial activity was seen in 25.3% of the isolates. Resistance to one metal or more was seen in 26.32% of the isolates. The ratio of rare-actinobacteria in the oligotrophic samples to enriched samples is 20% more than Streptomyces. Percentage of strains with the highest activity in esterase, amylase, DNase, protease or lipase activity that were isolated from organic-rich environmental samples were 100, 100, 100, 82 and 82%, respectively. Also, 26.32% of the actinobacterial isolates resisted to heavy metals. It was concluded that Hampoeil cave is a good source in finding cave-living actinobacteria potent in producing hydrolytic enzymes and bioremediation.
Acinetobacter baumannii is a bacterium found in most places, especially in clinics and hospitals, and an important agent of nosocomial infections. The presence of class D enzymes such as OXA-type carbapenemases in A. baumannii is proven to have a key function in resistance to carbapenem. The aim of the current study is to determine the blaOXA-type
carbapenemase genes and antimicrobial resistance among clinically isolated samples of A. baumannii. We assessed 100 clinically isolated specimens of A. baumannii from patients in intensive care units of educational hospitals of Hamadan, West of Iran. The A. baumannii isolates' susceptibility to antibiotics was performed employing disk diffusion method. Multiplex polymerase chain reaction was used to identify the blaOXA-24-like
, blaOXA-23-like
, blaOXA-58-like
, and blaOXA-51-like
genes. The blaOXA-23-like
, blaOXA-24-like
, and blaOXA-58-like
genes' prevalence were found to be 84, 58, and 3%, respectively. The highest coexistence of the genes was for blaOXA-51/23
(84%) followed by blaOXA-51/24-like
(58%). The blaOXA-51/23-
like pattern of genes is a sort of dominant gene in resistance in A. baumannii from Hamadan hospitals. The highest resistance to piperacillin (83%) and ciprofloxacin (81%) has been observed in positive isolates of blaOXA-23-like
. The A. baumannii isolates with blaOXA-58-like
genes did not show much resistance to antibiotics. Based on the results of the phylogenetic tree analysis, all isolates have shown a high degree of similarity. This study showed the high frequency of OXA-type carbapenemase genes among A. baumannii isolates from Hamadan hospitals, Iran. Thus, applying an appropriate strategy to limit the spreading of these strains and also performing new treatment regimens are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.