Closely related sympatric species are expected to evolve strong species discrimination because of the reinforcement of mate preferences. Fitness costs of heterospecific matings are thought to be higher in females than in males, and females are therefore expected to show stronger species discrimination than males. Here, we investigated gender and species differences in sexual isolation in a sympatric species pair of Calopteryx damselflies. The genus Calopteryx is one of the classic examples of reproductive character displacement in evolutionary biology, with exaggerated interspecific differences in the amount of dark wing coloration when species become sympatric. Experimental manipulation of the extent of dark wing coloration revealed that sexual isolation results from both female and male mate discrimination and that wing melanization functions as a species recognition character. Female choice of conspecific males is entirely based on wing coloration, whereas males in one species also use other species recognition cues in addition to wing color. Stronger species discrimination ability in males is presumably an evolutionary response to an elevated male predation risk caused by conspicuous wing coloration. Gender differences in species discrimination and fitness costs of male courtship can thus shed new light on the evolution of asymmetric sexual isolation and the reinforcement of mate preferences.
Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.