We extend the analysis presented in [1] for the affine combination of two least mean-square (LMS) filters to allow for colored inputs and nonstationary environments. Our theoretical model deals, in a unified way, with any combinations based on the following algorithms: LMS, normalized LMS (NLMS), and recursive-least squares (RLS). Through the analysis, we observe that the affine combination of two algorithms of the same family with close adaptation parameters (stepsizes or forgetting factors) provides a 3 dB gain in relation to its best component filter. We study this behavior in stationary and nonstationary environments. Good agreement between analytical and simulation results is always observed. Furthermore, a simple geometrical interpretation of the affine combination is investigated. A model for the transient and steady-state behavior of two possible algorithms for estimation of the mixing parameter is proposed. The model explains situations in which adaptive combination algorithms may achieve good performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.