Steam-assisted gravity drainage (SAGD) is an enhanced oil recovery process for heavy oils and bitumens. Numerical simulations of this thermal process allow us to estimate the retrievable volume of oil and to evaluate the benefits of the project. As there exists a thin flow interface (compared to the reservoir dimensions), SAGD simulations are sensitive to the grid size. Thus, to obtain precise forecasts of oil production, very small-sized cells have to be used, which leads to prohibitive CPU times. To reduce these computation times, one can use an adaptive mesh refinement technique, which will only refine the grid in the interface area and use coarser cells outside. To this end, in this work, we introduce new refinement criteria, which are based on the work achieved in Kröner and Ohlberger (Math Comput 69(229):25-39, 2000) on a posteriori error estimators for finite volume schemes for hyperbolic equations. Through numerical experiments, we show that they enable us to decrease in a significant way the number of cells (and then CPU times) while maintaining a good accuracy in the results.Keywords SAGD · Adaptive mesh refinement · A posteriori error estimator · Error bounds (65M15) · Finite volume methods (76M12) · Conservation laws (35L65)
This work presents a new workflow to obtain a better-constrained reservoir-scale model for an Alkaline-Surfactant-Polymer (ASP) injection pilot design. It is explained how the impact of uncertain parameters related to ASP flooding can be quantified, using calibrated core-scale simulation based on experimental results, and how the influential parameters range for future reservoir-scale simulation can be determined. Computational costs of core-scale model are therefore much lower, and the final reservoir model is better constrained. ASP flooding feasibility implies core scale studies, where chemical formulations are validated in the laboratory under field conditions. In the objective of the pilot designing, a numerical model is constructed and calibrated to history-match the core flood sequences: Remaining Oil Saturation (ROS), surfactant-polymer (SP) and polymer-alkaline (PA) injection and eventually the chase water slug. In order to quantify the impact of ASP chemical parameters on the history match, the Global Sensitivity Analysis (GSA) was performed using Response Surface Modeling (RSM). To obtain the acceptable range of influential parameters for future reservoir-scale simulation, the Bayesian optimization is used. Applying this methodology on a real reservoir core, the laboratory measurements are accurately reproduced. Nevertheless, once the core-scale model was matched, the transition to reservoir-scale model must be done. Due to a large number of parameters and their associated uncertainties, this transition is not straight-forward. Thus, an additional step in our workflow is included. A new methodology is applied to firstly quantify the impact of uncertain parameters related to ASP flooding (adsorption of surfactant on the rock, critical micellar concentration, water mobility reduction by polymer etc.). To do so, the RSM is used and influential parameters are identified. In this study, the surfactant adsorption coefficients are the most influential parameters while others related to SPA have a poor impact on experiment results matching. Secondly, the acceptable range of influential parameters for future reservoir-scale simulation and feasibility study is obtained during Bayesian optimization. Thus, instead of using a wide (prior) range of uncertain parameters values, refined (posterior) distribution laws can be used for future reservoir model. While the classical approach consists in matching experimental results to obtain calibrated values of certain properties (that are then entered in the reservoir model) and finally determine the influential parameters at the reservoir scale, here the choice was made to determine influential parameters and characterize their impacts at the core scale. This step helps to better constrain the reservoir model. Ongoing work is using the results of this workflow for pilot design and risk analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.