Abstract. The graph-theoretic operation of rooted subtree prune and regraft is increasingly being used as a tool for understanding and modelling reticulation events in evolutionary biology. In this paper, we show that computing the rooted subtree prune and regraft distance between two rooted binary phylogenetic trees on the same label set is NP-hard. This resolves a longstanding open problem. Furthermore, we show that this distance is fixed parameter tractable when parameterised by the distance between the two trees.
It is now well-documented that the structure of evolutionary relationships between a set of present-day species is not necessarily tree-like. The reason for this is that reticulation events such as hybridizations mean that species are a mixture of genes from different ancestors. Since such events are relatively rare, a fundamental problem for biologists is to determine the smallest number of hybridization events required to explain a given (input) set of data in a single (hybrid) phylogeny. The main results of this paper show that computing this smallest number is APX-hard, and thus NP-hard, in the case the input is a collection of phylogenetic trees on sets of present-day species. This answers a problem which was raised at a recent conference (Phylogenetic Combinatorics and Applications, Uppsala University, 2004). As a consequence of these results, we also correct a previously published NP-hardness proof in the case the input is a collection of binary sequences, where each sequence represents the attributes of a particular present-day species. The APX-hardness of these problems means that it is unlikely that there is an efficient algorithm for either computing the result exactly or approximating it to any arbitrary degree of accuracy.
. (2007) 'Computing the hybridisation number of two phylogenetic trees is xed parameter tractable.', Transactions on computational biology and bioinformatics., 4 (3). pp. 458-466. Further information on publisher's website:http://dx.doi.org/10. 1109/tcbb.2007.1019 Publisher's copyright statement: c 2007 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder Personal use of this material is permitted.However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-Reticulation processes in evolution mean that the ancestral history of certain groups of present-day species is non-tree-like. These processes include hybridization, lateral gene transfer, and recombination. Despite the existence of reticulation, such events are relatively rare and, so, a fundamental problem for biologists is the following: Given a collection of rooted binary phylogenetic trees on sets of species that correctly represent the tree-like evolution of different parts of their genomes, what is the smallest number of "reticulation" vertices in any network that explains the evolution of the species under consideration? It has been previously shown that this problem is NP-hard even when the collection consists of only two rooted binary phylogenetic trees. However, in this paper, we show that the problem is fixed-parameter tractable in the two-tree instance when parameterized by this smallest number of reticulation vertices.Index Terms-Rooted phylogenetic tree, reticulate evolution, hybridization network, agreement forest, subtree prune and regraft.
Abstract. Motivated by the result that an 'approximate' evaluation of the Jones polynomial of a braid at a 5 th root of unity can be used to simulate the quantum part of any algorithm in the quantum complexity class BQP, and results relating BQP to the counting class GapP, we introduce a form of additive approximation which can be used to simulate a function in BQP. We show that all functions in the classes #P and GapP have such an approximation scheme under certain natural normalisations. However we are unable to determine whether the particular functions we are motivated by, such as the above evaluation of the Jones polynomial, can be approximated in this way. We close with some open problems motivated by this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.