The physical properties of material largely depend on their crystal structure. Nanowire growth is an important method for attaining metastable crystal structures in III-V semiconductors, giving access to advantageous electronic and surface properties. Antimonides are an exception, as growing metastable wurtzite structure has proven to be challenging. As a result, the properties of these materials remain unknown. One promising means of accessing wurtzite antimonides is to use a wurtzite template to facilitate their growth. Here, a template technique using branched nanowire growth for realizing wurtzite antimonide material is demonstrated. On wurtzite InAs trunks, InAs Sb branch nanowires at different Sb vapor phase compositions are grown. For comparison, branches on zinc blende nanowire trunks are also grown under identical conditions. Studying the crystal structure and the material composition of the grown branches at different x shows that the Sb incorporation is higher in zinc blende than in wurtzite. Branches grown on wurtzite trunks are usually correlated with stacking defects in the trunk, leading to the emergence of a zinc blende segment of higher Sb content growing parallel to the wurtzite structure within a branch. However, the average amount of Sb incorporated within the branch is determined by the vapor phase composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.