Photodarkening experiments are performed on ytterbium-doped silicate glass samples. A strong charge-transfer (CT) absorption band near 230nm in aluminosilicate glass is found to be correlated to the mechanism of induced color center formation. Excitation into the CT-absorption band generates similar color centers as observed in ytterbium-doped fiber lasers under 915nm high power diode pumping. The position of the CT-absorption band is compositional dependent and is shifted to shorter wavelengths in ytterbium doped phosphosilicate glass. Very low levels of photodarkening is observed for the ytterbium doped phosphosilicate glass composition under 915nm high power diode pumping. Possible excitation routes to reach the CT-absorption band under 915nm pumping are discussed.
A broad visible luminescence band and characteristic IR luminescence of Yb(3+) ions are observed under UV excitation in ytterbium-doped aluminosilicate glass. Samples made under both oxidizing and reducing conditions are analyzed. A strong charge-transfer absorption band in the UV range is observed for glass samples containing ytterbium. Additional absorption bands are observed for the sample made under reducing conditions, which are associated with f-d transitions of divalent ytterbium. The visible luminescence band is attributed to 5d-4f emission from Yb(2+) ions, and the IR luminescence is concluded to originate from a relaxed charge-transfer transition. The findings are important to explain induced optical losses (photodarkening) in high-power fiber lasers.
We show that the photodarkening resistivity of ytterbium-doped fiber lasers can be greatly improved by cerium codoping. It is suggested that the coexistence of the redox couple Ce(3+)/Ce(4+) in the glass provides means for trapping both hole- and electron-related color centers that are responsible for the induced optical losses in Yb-doped fiber lasers.
Transparent electrodes (TEs) made of metallic nanowires, such as Ag, Au, Cu, and Ni, are attracting increasing attention for several reasons: (1) they can act as a substitute for tin oxide-based TEs such as indium-tin oxide (ITO) and fluorine-doped tin oxide (FTO); (2) various methods exist for fabricating such TEs such as filtration, spraying, and Meyer bar coating; (3) greater compatibility with different substrates can be achieved due to the variety of fabrication methods; and (4) extra functions in addition to serving as electrodes, such as catalytic abilities, can be obtained due to the metals of which the TEs are composed. There are a large number of applications for TEs, ranging from electronics and sensors to biomedical devices. This short review is a summary of recent progress, mainly over the past five years, on silver nanowire-based TEs. The focus of the review is on theory development, mechanical, chemical, and thermal stability as well as optical properties. The many applications of TEs are outside the scope of this review.
Development of cost-effective and environmentally friendly manufacturing methods will enable important advances for the production of large-scale flexible electronics. Laser processing has shown to be a promising candidate that offers a fast and non-destructive way to produce highly conductive patterns on flexible substrates such as plastics. However, an emerging option with a lower environmental impact is instead the use of cellulose-based flexible substrates, such as paper. In this work we investigate the use of laser sintering of silver nanoparticle inks, which were inkjet-printed on three different types of paper. Patterns with a high conductivity could be manufactured where a special care was taken to prevent the substrates from damage by the intense laser light. We found that the best results was obtained for a photopaper, with a conductivity of 1.63 ∗ 107 S/m corresponding to nearly 26% of the bulk silver conductivity. In addition, we demonstrate laser sintering to fabricate a fully functional near field communication tag printed on a photopaper. Our results can have an important bearing for the development of cost-effective and environmentally friendly production methods for flexible electronics on a large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.