Combinatorial protein engineering provides powerful means for functional selection of novel binding proteins. One class of engineered binding proteins, denoted affibodies, is based on the three-helix scaffold of the Z domain derived from staphylococcal protein A. The Z SPA-1 affibody has been selected from a phagedisplayed library as a binder to protein A. Z SPA-1 also binds with micromolar affinity to its own ancestor, the Z domain. We have characterized the Z SPA-1 affibody in its uncomplexed state and determined the solution structure of a Z:Z SPA-1 protein-protein complex. Uncomplexed Z SPA-1 behaves as an aggregation-prone molten globule, but folding occurs on binding, and the original (Z) three-helix bundle scaffold is fully formed in the complex. The structural basis for selection and strong binding is a large interaction interface with tight steric and polar/nonpolar complementarity that directly involves 10 of 13 mutated amino acid residues on Z SPA-1. We also note similarities in how the surface of the Z domain responds by induced fit to binding of Z SPA-1 and Ig Fc, respectively, suggesting that the Z SPA-1 affibody is capable of mimicking the morphology of the natural binding partner for the Z domain.protein engineering ͉ protein-protein interactions ͉ molecular recognition ͉ NMR spectroscopy ͉ induced fit T here is an interest in generating novel classes of binding proteins that can be used as an alternative to immunoglobulins in various biochemical assays and biotechnological applications. To this end, carefully chosen protein domains can be used as framework structures for combinatorial protein engineering. Affibodies constitute a class of engineered binding proteins for which the three-helix bundle Z domain is used as a scaffold. The 58-aa residue Z domain is derived from one of five homologous domains (the B domain) in Staphylococcus aureus protein A (SPA). SPA binds strongly to the Fc region of immunoglobulins, and Z was originally developed as a stabilized gene fusion partner for affinity purification of recombinant proteins by using IgG-containing resins (1). The structure of a complex between the B domain of SPA and an Fc fragment shows that the binding surface consists of residues that are exposed on helices 1 and 2, whereas helix 3 is not directly involved in binding (2). Affibodies are selected from combinatorial libraries in which typically 13 residues at the Fc-binding surface of helices 1 and 2 are randomized. Specific binders to target proteins are then identified by biopanning the phage-displayed library against desired targets (3). Several Z-based affibodies with specific proteinbinding properties have in this way been developed and used as affinity tools in a number of applications (4-7).Structural studies of engineered protein-binding domains and their complexes are of interest for methods development in biotechnology as well as for basic studies of protein-protein interactions and the mechanisms of biomolecular recognition. Here we describe the (solution) structural and biophysic...
The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants.
Assignment of NMR spectra is a prerequisite for structure determination of proteins using NMR. The time spent on the assignment is comparatively long compared to that spent on other parts in the protein structure determination process, but it can be shortened by using either interactive or fully automated computer programs. To benefit from the advantages of both types of program we have developed a version of the interactive assignment program ANSIG to include automatized, yet user-supervised, routines. The new program includes tools for (i) semiautomatic sequential assignment, (ii) plotting of distances from PDB structure files directly in NMR spectra and (iii) statistical analysis of distance restraint violations with the possibility to directly zoom to violated NOEs in NOESY spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.