Pyrrolopyrrole cyanine (PPCy) dyes are presented as a novel class of near-infrared (NIR) chromophores, which are synthesized in a condensation reaction of diketopyrrolopyrrole with heteroarylacetonitrile compounds. Their optical properties are marked by strong and narrow-band NIR absorptions. Complexation products with BF(2) and BPh(2) show strong NIR fluorescence and hardly any absorption in the visible range. We synthesized a series of new PPCys that differ only in the heterocyclic peripheral groups of the chromophore. With this strategy, the absorption spectra can be tuned between 684 and 864 nm, while high fluorescence quantum yields are maintained. The influence of the heterocycle on the optical properties of the dyes is discussed.
By a stepwise synthesis strategy biofunctionalized Pyrrolopyrrole Cyanines (PPCy) with an asymmetric substitution pattern were obtained. These exhibit extremely strong and narrowband NIR absorption and fluorescence. Internalization of a peptide bound PPCy is demonstrated using live cell microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.