Two new programs have been developed for searching the Cambridge Structural Database (CSD) and visualizing database entries: ConQuest and Mercury. The former is a new search interface to the CSD, the latter is a high-performance crystal-structure visualizer with extensive facilities for exploring networks of intermolecular contacts. Particular emphasis has been placed on making the programs as intuitive as possible. Both ConQuest and Mercury run under Windows and various types of Unix, including Linux.
The crystallographically determined bond length, valence angle, and torsion angle information in the Cambridge Structural Database (CSD) has many uses. However, accessing it by means of conventional substructure searching requires nontrivial user intervention. In consequence, these valuable data have been underutilized and have not been directly accessible to client applications. The situation has been remedied by development of a new program (Mogul) for automated retrieval of molecular geometry data from the CSD. The program uses a system of keys to encode the chemical environments of fragments (bonds, valence angles, and acyclic torsions) from CSD structures. Fragments with identical keys are deemed to be chemically identical and are grouped together, and the distribution of the appropriate geometrical parameter (bond length, valence angle, or torsion angle) is computed and stored. Use of a search tree indexed on key values, together with a novel similarity calculation, then enables the distribution matching any given query fragment (or the distributions most closely matching, if an adequate exact match is unavailable) to be found easily and with no user intervention. Validation experiments indicate that, with rare exceptions, search results afford precise and unbiased estimates of molecular geometrical preferences. Such estimates may be used, for example, to validate the geometries of libraries of modeled molecules or of newly determined crystal structures or to assist structure solution from low-resolution (e.g. powder diffraction) X-ray data.
Abstract:The complexes [ (P,)Rh(hfacac)] 1 [P, = R,P-(X)-PR,] are introduced as model compounds for the investigation of the intrinsic steric properties of the [(PJRh] fragment. The ligand exchange processes that occur during the syntheses of 1 from [(cod)Rh(hfacac)] and the appropriate chelating diphosphanes 3 were studied by variable-temperature multinuclear NMR spectroscopy. The molecular structures of eight examples of 1 with systematic structural variations in 3 were determined by X-ray crystallography. The steric repulsion of the PR, groups within the chelating fragment was found to significantly influence the coordination geometry of [(P,)Rh], depending on the nature and length of the backbone (X). A linear correlation between the P-Rh-P angles in the solid state and the lo3Rh Keywords: carbon dioxide activation * homogeneous catalysis ligand effects * molecular modeling * rhodium chemical shifts reveals a similar geometric situation in solution. A unique molecular modeling approach was developed to define the accessible molecular surface (AMS) of the rhodium center within the flexible [ (PJRh] fragment. The potential of this model for application in homogeneous catalysis was exemplified by the use of 1 as catalysts in a test reaction, the hydrogenation of CO, to formic acid. Complexes 1 were found to be the most active catalyst precursors for this process in organic solvents known to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.