Here we suggest a mixed computational and empirical approach serving to optimize the parameters of complex and polarizable molecular mechanics (PMM) models for complicated liquids. The computational part of the parameter optimization relies on hybrid calculations combining density functional theory (DFT) for a solute molecule with a PMM treatment of its solvent environment at well-defined thermodynamic conditions. As an application we have developed PMM models for water featuring ν = 3, 4, and 5 points of force action, a Gaussian inducible dipole and a Buckingham potential at the oxygen, the experimental liquid phase geometry, the experimental gas phase polarizability α(exp)(g) = 1.47 ų, and, for ν = 4 and 5, the gas phase value μ(exp)(g) = 1.855 D for the static dipole moment. The widths of the Gaussian dipoles and, for ν = 4 and 5, also the electrostatic geometries of these so-called TLνP models are derived from self-consistent DFT/PMM calculations, and the parameters of the Buckingham potentials (and the static TL3P dipole moment) are estimated from molecular dynamics (MD) simulations. The high quality of the resulting models is demonstrated for the observables targeted during optimization (potential energy per molecule, pressure, radial distribution functions) and a series of predicted properties (quadrupole moments, density at constant pressure, dielectric constant, diffusivity, viscosity, compressibility, heat capacity) at certain standard conditions. Remaining deficiencies and possible ways for their removal are discussed.
Based on p'th order Cartesian Taylor expansions of Coulomb interactions and on hierarchical decompositions of macromolecular simulation systems into hierarchies of nested, structure-adapted, and adaptively formed clusters of increasing size, fast multipole methods are constructed for rapid and accurate calculations of electrostatic interactions. These so-called SAMMp algorithms are formulated through totally symmetric and traceless tensors describing the multipole moments and the coefficients of local Taylor expansions. Simple recursions for the efficient evaluation and shifting of multipole moments are given. The required tensors are explicitly given up to order p = 4. The SAMMp algorithms are shown to guarantee the reaction principle. For systems with periodic boundaries, a reaction field (RF) correction is applied, which introduces at distances beyond the "minimum image convention" boundary a dielectric continuum surrounding each cluster at the top level of coarse graining. The correctness of the present SAMMp implementation is demonstrated by analyzing the scaling of the residuals and by checking the numerical accuracy of the reaction principle for a pair of distant molecular ions in vacuum. Molecular dynamics simulations of pure water and aqueous solutions containing artificial ions, which are enclosed by periodic boundaries, demonstrate the stability and low-noise behavior of SAMMp/RF.
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10 3 -10 5 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM. © 2013 AIP Publishing LLC. [http://dx
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.