In this article, fuzzy logic based adaptive histogram equalization (AHE) is proposed to enhance the contrast of MRI brain image. Medical image plays an important role in monitoring patient's health condition and giving an effective diagnostic. Mostly, medical images suffer from different problems such as poor contrast and noise. So it is necessary to enhance the contrast and to remove the noise in order to improve the quality of a various medical images such as CT, X‐ray, MRI, and MAMOGRAM images. Fuzzy logic is a useful tool for handling the ambiguity or uncertainty. Brightness Preserving Adaptive Fuzzy Histogram Equalization technique is proposed to improve the contrast of MRI brain images by preserving brightness. Proposed method comprises of two stages. First, fuzzy logic is applied to an input image and then it's output is given to AHE technique. This process not only preserves the mean brightness and but also improves the contrast of an image. A huge number of highly MRI brain images are taken in the proposed method. Performance of the proposed method is compared with existing methods using the parameters namely entropy, feature similarity index, and contrast improvement index and the experimental results show that the proposed method overwhelms the previous existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.