Ramucirumab (RAMU) is a recently US Food and Drug Administration-approved monoclonal antibody that is included in various anticancer protocols. It has a structural complexity and high degradation risk that have a significant effect on its safety and effectiveness. The major aim of this work was to assess the degradation pattern of RAMU based on physicochemical characterization. Mechanical agitation, repeated freeze-thaw cycles, pH and temperature were the selected stress conditions to which RAMU samples were subjected. The SE-HPLC method was applied and validated to monitor the RAMU monomer along with its aggregates and/or fragments.The purity of the separated peaks together with system suitability parameters were determined through the calculation of percentage purity and percentage drop in RAMU concentration. The results were interpreted by correlating them with those of dynamic light scattering and reducing and non-reducing sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Samples incubated at pH 2.0-10.0 and 37 C for up to 4 weeks were analysed, recording detection of reversed phase (RP) aggregates and low molecular weight peptide fragments. Similarly, samples under short-term storage conditions of 4 weeks at different temperatures (À20, 2-8, 25, 37 and 50 C) showed low molecular weight peptide fragments but to a lesser extent. These results highlight the alarming effect on RAMU multidose vial efficacy and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.