The diversity of sickle cell disease severity is attributed to several cis acting factors, among them the single nucleotide polymorphisms (SNPs) and (AT) rich region in the β-locus control region (β-LCR). This contains five DNase I hypersensitive sites (HS) located 6 to 22 kb upstream to the ϵ gene. The most important of these is the HS2 (5' β-LCR-HS2), characterized by the presence of three different SNPs and a microsatellite region known to be in association with β(S) chromosomes in various populations. The aim of this study was to present the molecular investigation of the 5' β-LCR-HS2 site in normal and sickle cell disease individuals in order to determine if there is any correlation or specificity between these molecular markers, the β(S) Tunisian chromosomes and phenotypical expression of sickle cell disease. One hundred and twenty-four chromosomes from Tunisian individuals (49 β(S) carriers and 13 normal individuals) were screened by polymerase chain reaction (PCR) and sequencing for the polymorphic short tandem microsatellite repeats (AT)(X)N(12)(AT)(Y) and the three SNPs (rs7119428, rs9736333 and rs60240093) of the 5' β-LCR-HS2. Twelve configurations of the microsatellite motif were found with an ancestral configuration elaborated by ClustalW software. Normal and mutated alleles were observed at the homozygous and heterozygous states for the three SNPs. Correlation between microsatellites and SNPs suggests that mutant SNP alleles were mainly associated, in the homozygous sickle cell disease phenotype, with the (AT)(8)N(12)GT(AT)(7) configuration, whereas, normal SNP alleles were associated with the (AT)(X)N(12)(AT)(11) configurations in normal β(A) chromosomes. The correlation of these various configurations with Hb F expression was also investigated. The principal component analysis (PCA) showed the correlation between the homozygous sickle cell disease phenotype, mutated SNP alleles and the Benin microsatellite configuration (AT)(8)N(12)GT(AT)(7), which confirmed the specificity of this configuration to the β(S) chromosomes. In addition, the observed high level of Hb F (14.6%) could play a protective role against Hb S to justify the modulation of sickle cell disease severity within the Benin haplotype compared to the other haplotypes. This study highlights the fact that the β-LCR-HS2 could be a genetic marker to identify the ethnic Tunisian β(S) chromosomes and facilitate the molecular diagnosis of sickle cell disease.
Pendred syndrome is an autosomal recessive disease characterised by congenital sensorineural deafness and goitre. The gene responsible for Pendred syndrome has been mapped to chromosome 7q31 in a 5.5 centimorgan (cM) interval flanked by D7S501 and D7S523. This interval was recently refined a to 1.7 cM interval located between D7S501 and D7S692. In the present study, we report linkage analysis data on a large consanguineous family genotyped with eight microsatellite markers located between D7S501 and D7S523. Complete cosegregation with the disease locus was observed with the loci analysed, which further supports locus homogeneity for Pendred syndrome and close linkage to this region. Haplotype analysis placed the Pendred syndrome gene between D7S496 and D7S2425 in a 0.8 cM interval. This additional refinement of the Pendred syndrome region will facilitate the construction of a physical map of the region and will help the identification of candidate genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.