Today, due to the pandemic of COVID-19 the entire world is facing a serious health crisis. According to the World Health Organization (WHO), people in public places should wear a face mask to control the rapid transmission of COVID-19. The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places. Therefore, it is very difficult to manually monitor people in overcrowded areas. This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places, by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19. This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked. The proposed framework is built by fine-tuning the state-of-the-art deep learning model, Faster-RCNN, and has been validated on a publicly available dataset named Face Mask Dataset (FMD) and achieving the highest average precision (AP) of 81% and highest average Recall (AR) of 84%. This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces. Moreover, this work applies to real-time and can be implemented in any public service area.
This study presents a novel method to detect the medical application based on Quantum Computing (QC) and a few Machine Learning (ML) systems. QC has a primary advantage i.e., it uses the impact of quantum parallelism to provide the consequences of prime factorization issue in a matter of seconds. So, this model is suggested for medical application only by recent researchers. A novel strategy i.e., Quantum Kernel Method (QKM) is proposed in this paper for data prediction. In this QKM process, Linear Tunicate Swarm Algorithm (LTSA), the optimization technique is used to calculate the loss function initially and is aimed at medical data. The output of optimization is either 0 or 1 i.e., odd or even in QC. From this output value, the data is identified according to the class. Meanwhile, the method also reduces time, saves cost and improves the efficiency by feature selection process i.e., Filter method. After the features are extracted, QKM is deployed as a classification model, while the loss function is minimized by LTSA. The motivation of the minimal objective is to remain faster. However, some computations can be performed more efficiently by the proposed model. In testing, the test data was evaluated by minimal loss function. The outcomes were assessed in terms of accuracy, computational time, and so on. For this, databases like Lymphography, Dermatology, and Arrhythmia were used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.