BackgroundSchistosomiasis is a chronic, debilitating parasitic disease infecting more than 200 million people and is second only to malaria in terms of public health importance. Due to the lack of a vaccine, patient therapy is heavily reliant on chemotherapy with praziquantel as the World Health Organization–recommended drug, but concerns over drug resistance encourage the search for new drug leads.Methods and FindingsThe efficacy of the vinyl sulfone cysteine protease inhibitor K11777 was tested in the murine model of schistosomiasis mansoni. Disease parameters measured were worm and egg burdens, and organ pathology including hepato- and splenomegaly, presence of parasite egg–induced granulomas in the liver, and levels of circulating alanine aminotransferase activity as a marker of hepatocellular function. K11777 (25 mg/kg twice daily [BID]), administered intraperitoneally at the time of parasite migration through the skin and lungs (days 1–14 postinfection [p.i.]), resulted in parasitologic cure (elimination of parasite eggs) in five of seven cases and a resolution of other disease parameters. K11777 (50 mg/kg BID), administered at the commencement of egg-laying by mature parasites (days 30–37 p.i.), reduced worm and egg burdens, and ameliorated organ pathology. Using protease class-specific substrates and active-site labeling, one molecular target of K11777 was identified as the gut-associated cathepsin B1 cysteine protease, although other cysteine protease targets are not excluded. In rodents, dogs, and primates, K11777 is nonmutagenic with satisfactory safety and pharmacokinetic profiles.ConclusionsThe significant reduction in parasite burden and pathology by this vinyl sulfone cysteine protease inhibitor validates schistosome cysteine proteases as drug targets and offers the potential of a new direction for chemotherapy of human schistosomiasis.
METHODS:Archival tissue specimens were collected from 30 patients with CRC who had undergone surgical intervention at King Khalid University Hospital. Patient demographic information, including age and gender, tumor sites, and histological type of CRC, was recorded. To measure TNF-a mRNA expression in CRC, total RNA was extracted from tumor formalin-fixed, paraffinembedded, and adjacent normal tissues. Reverse transcription and reverse transcription polymerase chain reaction were performed. Colorectal tissue microarrays were constructed to investigate the protein expression of TNF-a by immunohistochemistry. RESULTS:The relative expression of TNF-a mRNA in colorectal cancer was significantly higher than that seen in adjacent normal colorectal tissue. High TNF -a gene expression was associated with Stage Ⅲ and Ⅳ neoplasms when compared with earlier tumor stages (P = 0.004). Eighty-three percent of patients (25/30) showed strong TNF-a positive staining, while only 10% (n = 3/30) of patients showed weak staining, and 7% (n = 2/30) were negative. We showed the presence of elevated TNF-a gene expression in cancer cells, which strongly correlated with advanced stages of tumor. CONCLUSION:High levels of TNF-a expression could be an independent diagnostic indicator of colorectal cancer, and targeting TNF-a might be a promising prognostic tool by assessment of the clinical stages of CRC.
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.
BackgroundEggs deposited in the liver of the mammalian host by the blood fluke parasite, Schistosoma mansoni, normally drive a T-helper-2 (Th2)-mediated granulomatous response in immune-competent mice. By contrast, in mice deprived of T-cells and incapable of producing granulomata, egg-secreted proteins (ESP) induce acute hepatic injury and death. Previous work has shown that one such ESP, the T2 ribonuclease known as omega-1, is hepatotoxic in vivo in that specific antisera to omega-1 prevent hepatocyte damage.Methodology/Principal FindingsUsing an in vitro culture system employing mouse primary hepatocytes and alanine transaminase (ALT) activity as a marker of heptocyte injury, we demonstrated that S. mansoni eggs, egg-secreted proteins (ESP), soluble-egg antigen (SEA), and omega-1 are directly hepatotoxic and in a dose-dependent manner. Depletion of omega-1 using a monoclonal antibody abolished the toxicity of pure omega-1 and diminished the toxicity in ESP and SEA by 47 and 33%, respectively. Anion exchange chromatography of ESP yielded one predominant hepatotoxic fraction. Proteomics of that fraction identified the presence of IPSE/alpha-1 (IL-4 inducing principle from S. mansoni eggs), a known activator of basophils and inducer of Th2-type responses. Pure recombinant IPSE/alpha-1 also displayed a dose-dependent hepatotoxicity in vitro. Monoclonal antibody depletion of IPSE/alpha-1 abolished the latter's toxicity and diminished the total toxicity of ESP and SEA by 32 and 35%, respectively. Combined depletion of omega-1 and IPSE/alpha-1 diminished hepatotoxicity of ESP and SEA by 60 and 58% respectively.ConclusionsWe identified IPSE/alpha-1 as a novel hepatotoxin and conclude that both IPSE/alpha-1 and omega-1 account for the majority of the hepatotoxicity secreted by S. mansoni eggs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.