The definitive screening design (DSD) and artificial neural network (ANN) were conducted for modeling the biosorption of Co(II) by Pseudomonas alcaliphila NEWG-2. Factors such as peptone, incubation time, pH, glycerol, glucose, K2HPO4, and initial cobalt had a significant effect on the biosorption process. MgSO4 was the only insignificant factor. The DSD model was invalid and could not forecast the prediction of Co(II) removal, owing to the significant lack-of-fit (P < 0.0001). Decisively, the prediction ability of ANN was accurate with a prominent response for training (R2 = 0.9779) and validation (R2 = 0.9773) and lower errors. Applying the optimal levels of the tested variables obtained by the ANN model led to 96.32 ± 2.1% of cobalt bioremoval. During the biosorption process, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the sorption of Co(II) ions by P. alcaliphila. FTIR indicated the appearance of a new stretching vibration band formed with Co(II) ions at wavenumbers of 562, 530, and 531 cm–1. The symmetric amino (NH2) binding was also formed due to Co(II) sorption. Interestingly, throughout the revision of publications so far, no attempt has been conducted to optimize the biosorption of Co(II) by P. alcaliphila via DSD or ANN paradigm.
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this study was designed to evaluate the effects of foliar application by ALA at 0 (distilled water as control) and 20 µM on wheat seedlings grown under sodic alkaline stress (50 mM 1:1 NaHCO3 & Na2CO3; pH 9.7. Under sodic alkaline stress, exogenous ALA significantly (p ≤ 0.05) improved growth (shoot fresh and dry weight), chlorophyll (Chl) a, b and Chl a + b, while Chl a/b ratio was not affected. Moreover, leaf relative water content (RWC), total soluble sugars, carotenoids, total soluble phenols, ascorbic acid, K and Ca were significantly increased in the ALA-treated plants compared to the ALA-untreated plants. This improvement was concomitant with reducing the rate of lipid peroxidation (malondialdehyde, MDA) and H2O2. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) demonstrated greater activity in the ALA-treated plants compared to the non-treated ones. Conversely, proline, catalase (CAT), guaiacol peroxidase (G-POX), Na and Na/K ratio were significantly decreased in the ALA-treated plants. Under sodic alkaline stress, the relative expression of photosystem II (D2 protein; PsbD) was significantly up-regulated in the ALA treatment (67% increase over the ALA-untreated plants); while Δ pyrroline-5-carboxylate synthase (P5CS), plasma membrane Na+/H+ antiporter protein of salt overly sensitive gene (SOS1) and tonoplast-localized Na+/H+ antiporter protein (NHX1) were down-regulated by 21, 37 and 53%, respectively, lower than the ALA-untreated plants. These results reveal that ALA may be involved in several possible mechanisms of alkalinity tolerance in wheat plants.
The enormous industrial usage of nickel during its manufacture and recycling has led to widespread environmental pollution. This study was designed to examine the ability of Gelidium amansii biomass to biosorb Ni2+ ions from an aqueous solution. Six independent variables, including contact time (1.0 and 3.0 h), pH (4 and 7), Ni2+ concentration (25 and 200 mg·L−1), temperature (25°C and 50°C), G. amansii biomass (1.0 and 4.0 g·L−1), and agitation mode (agitation or static), were investigated to detect the significance of each factor using a Plackett–Burman design. The analysis of variance for the Ni2+ biosorption percentage indicated that three independent variables (contact time, temperature, and agitation–static mode) exhibited a high level of significance in the Ni2+ biosorption process. Twenty experiments were conducted containing six axial, eight factorial, and six replicates points at center points. The resulting face-centered central composite design analysis data for the biosorption of Ni2+ exhibited a very large variation in the removal percentage of Ni2+, which ranged from 29.73 to 100.00%. The maximum Ni2+ biosorption percentage was achieved in the 16th run with an experimental percentage quantified as 100.00% under the experimental conditions of 3 h of incubation time and 45°C with 100 rpm for agitation speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.