Whether attempting to eliminate parasitic Li metal plating on graphite (and other Li-ion anodes) or enabling stable, uniform Li metal formation in 'anode-free' Li battery configurations, the detection and characterization (morphology, microstructure, chemistry) of Li that cannot be reversibly cycled is essential to understand the behavior and degradation of rechargeable batteries. In this review, various approaches used to detect and characterize the formation of Li in batteries are discussed. Each technique has its unique set of advantages and limitations, and works towards solving only part of the full puzzle of battery degradation. Going forward, multimodal characterization holds the most promise towards addressing two pressing concerns in the implementation of the next generation of batteries in the transportation sector (viz. reducing recharging times and increasing the available capacity per recharge without sacrificing cycle life). Such characterizations involve combining several techniques (experimental-and/or modeling-based) in order to exploit their respective advantages and allow a more comprehensive view of cell degradation and the role of Li metal formation in it. It is also discussed which individual techniques, or combinations thereof, can be implemented in real-world battery management systems on-board electric vehicles for early detection of potential battery degradation that would lead to failure.
Batteries capable of extreme fast-charging (XFC) are a necessity for the deployment of electric vehicles. Material properties of electrodes and electrolytes along with cell parameters such as stack pressure and temperature have coupled, synergistic, and sometimes deleterious effects on fast-charging performance. We develop a new experimental testbed that allows precise and conformal application of electrode stack pressure. We focus on cell capacity degradation using single-layer pouch cells with graphite anodes, LiNi0.5Mn0.3Co0.2O2 (NMC532) cathodes, and carbonate-based electrolyte. In the tested range (10 – 125 psi), cells cycled at higher pressure show higher capacity and less capacity fading. Additionally, Li plating decreases with increasing pressure as observed with scanning electron microscopy (SEM) and optical imaging. While the loss of Li inventory from Li plating is the largest contributor to capacity fade, electrochemical and SEM examination of the NMC cathodes after XFC experiments show increased secondary particle damage at lower pressure. We infer that the better performance at higher pressure is due to more homogenous reactions of active materials across the electrode and less polarization through the electrode thickness. Our study emphasizes the importance of electrode stack pressure in XFC batteries and highlights its subtle role in cell conditions.
This Letter covers the design and implementation of a generalizable system for the precise alignment of X-ray gratings. Next-generation high-energy grating-based Differential Phase Contrast (gDPC) X-ray imaging systems require precise alignment of the X-ray gratings as low as 1 mrad in rotation and 0.5 mm in translation. In this work, we designed holographic fiducial marks, consisting of four reflective Fresnel zone plates, each placed in a separate quadrant of the mark. When illuminated with a collimated laser beam, each mark creates a predefined pattern of four points, which changes quantitatively for any misalignment in each of the three translational and three rotational degrees of freedom. We fabricated the designed fiducial marks using photolithography and etching processes. The experimental system is implemented using a HeNe laser and an optical imaging system, which includes a beam expander, a plate beam splitter, and a CMOS camera, suitable for aligning practical gratings in gDPC X-ray imaging systems. Our experimental results demonstrate the rotational precision capabilities of the reported alignment system down to 0.42 mrad around the optical axis and 0.03 mrad around the axes perpendicular to the optical axis. The translational precision of 83.64 μm along the optical axis and 1.22 μm along the axes perpendicular to the optical axis is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.