Elastomers are susceptible to chemical ageing, i.e., scission and cross-linking, at high temperatures. This thermally driven ageing process affects their mechanical properties and leads to limited operating time. Continuous and intermittent stress relaxation measurements were conducted on ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) samples for different ageing times and an ageing temperature of 125 °C. The contributions of chain scission and cross-linking were analysed for both materials at different ageing states, elucidating the respective ageing mechanisms. Furthermore, compression set experiments were performed under various test conditions. Adopting the two-network model, compression set values were calculated and compared to the measured data. The additional effect of physical processes to scission and cross-linking during a long-term thermal exposure is quantified through the compression set analysis. The characteristic times relative to the degradation processes are also determined.
The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, Q(B), and the S(2) state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of Q(A)(-) reoxidation.
Variation in the composition of Origanum majorana L. essential oil (EO) and fatty acids were studied under salt treatment. Plant material has been harvested at 2 phenological stages: early vegetative stage (EVS) and late vegetative stage (LVS) or prefloral. Our results showed that the application of 75 mM NaCl increased total lipid contents in marjoram shoots and caused great qualitative changes in the fatty acids profiles. NaCl treatment reduced and stimulated the EO yields, respectively, at EVS and LVS and induced quantitative changes in the chemical EO composition in shoots. Phenolic contents were higher during the LVS than EVS in the absence and the presence of salt. Under control conditions, RP-HPLC analysis of the methanolic extract of marjoram dried shoots showed a predominance of flavonoid during the EVS whereas phenolic acids predominated during the LVS. However, under 75 mM NaCl, we noted a predominance of flavonoid at LVS and constant levels of phenolic and flavonoid classes at the EVS. For control treatment and at both EVS and LVS, the main components identified were respectively rosmarinic acid gallic as phenolic acids and amentoflavone as flavonoid. In the presence of salt and at the EVS, we observed a significant increase in trans-2 hydrocinnamic, gallic acid and quercetin-3-galactoside contents. However, for the LVS, salt induced a stimulation of gallic acid, apigenin, and amentoflavone. Our results showed that LVS had the highest contents of bioactive compounds, and could be considered as the best stage for harvesting marjoram plants. Practical Application: In this study, the fatty acid composition, essential oil, and phenolic content of Origanum majorana were investigated. This is important for potential application of marjoram as functional food at the late vegetative stage. The richness of O. majorana in volatile and phenolic active compounds known for their antioxidant, antimicrobial, and insecticidal activities could support the utilization of this plant in a large field of application including cosmetic, pharmaceutical, agro alimentary, and biological defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.