[1] We describe the ecohydrology of a unique semiarid broadleaf deciduous forest in Dhofar (Oman). The forest is surrounded by desert and is confined to a coastal area, where the summer wet season is characterized by a persistent dense cloud immersion. Using field observations, we show how clouds render the ecosystem particularly water conserving and therefore create a niche for a moist forest biome in a semiarid area in three ways. First, horizontal precipitation (collection of cloud droplets on tree canopies) added valuable water, such that about two times as much water was received below the canopy (net precipitation) compared to above (rainfall). Second, high stemflow, of about 30% to net precipitation, led to concentrated water input around the stems. Third, transpiration was suppressed during the cloudy summer season, which allowed for storage of the received water. It was only used after the end of the wet season and lasted for the following 3 months, which roughly doubled the length of the growing season. Our results demonstrate that cloud immersion may shape ecosystem hydrology in significant ways, particularly in semiarid environments.
Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The number of studies devoted to applying CMR with higher membrane area per unit volume in multi-phase reactions remains very limited for both catalytic polymeric and inorganic membranes. The various bio-based catalytic membrane system is also used in a different commercial application. The opportunities and advantages offered by applying catalytic membrane reactors to multi-phase systems need to be further explored. In this review, the preparation and the application of inorganic membrane reactors in the different catalytic processes as water gas shift (WGS), Fisher Tropsch synthesis (FTS), selective CO oxidation (CO SeLox), and so on, have been discussed.
A three-dimensional numerical model for flow and solute transport was used for the management of the Salalah aquifer. The model calibration procedures consisted of calibrating the aquifer system hydraulic parameters by history matching under steady and transient conditions. The history of input and output of the aquifer were reconstructed in a transient calibration from 1993 to 2005. Predictive simulation of the aquifer was carried out under transient conditions to predict the future demand of groundwater supply for the next 15 years. A baseline scenario was worked out to obtain the piezometric surface and salinity distribution for the "business as usual" conditions of the aquifer. The "business as usual" scenario was predicted and simulated for the period 2006 until 2020. The effectiveness of seven management options was proposed and assessed for comparison with the "business as usual" conditions. The established simulation model was used to predict the distribution of the piezometric surface, salinity distribution, and mass balance under the proposed scenarios for the prediction period 2006-2020. The scenarios were: (1) relocate Garziz and MAF farms far from the freshwater zone, (2) suspend the abstraction of grass production for 4 months a year, (3) changes in agricultural and irrigation system patterns, (4) establish a desalination plant, (5) combined scenario (1 + 4), (6) combined scenario (1 + 3), and (7) combining all scenarios (1 + 2 + 3 + 4). The result of the simulation shows that the best effective option in terms of aquifer groundwater levels is the fifth proposed scenario and the sixth proposed scenario is the best effective option in terms of aquifer groundwater salinity situation during the next 15 years. This project suggested the application of scenario 6 as it is environmentally sound in terms of sustainable management. A prediction has been M. I. Shammas (B) · R. Thunvik (B)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.