1,2,3,4-Diepoxybutane (DEB) is a bifunctional electrophile capable of forming DNA-DNA and DNA-protein cross-links. DNA alkylation by DEB produces N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)-guanine monoadducts, which can then form 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) lesions. All three optical isomers of DEB are produced metabolically from 1,3-butadiene, but S,S-DEB is the most cytotoxic and genotoxic. In the present work, interstrand and intrastrand DNA-DNA cross-linking by individual DEB stereoisomers was investigated by PAGE, mass spectrometry, and stable isotope labeling. S,S-, R,R-, and meso-diepoxides were synthesized from l-dimethyl-2,3-O-isopropylidene-tartrate, d-dimethyl-2,3-O-isopropylidene-tartrate, and meso-erythritol, respectively. Total numbers of bis-N7G-BD lesions (intrastrand and interstrand) in calf thymus DNA treated separately with S,S-, R,R-, or meso-DEB (0.01-0.5 mM) were similar as determined by capillary HPLC-ESI(+)-MS/MS of DNA hydrolysates. However, denaturing PAGE has revealed that S,S-DEB produced the highest number of interchain cross-links in 5'-GGC-3'/3'-CCG-5' sequences. Intrastrand adduct formation by DEB was investigated by a novel methodology based on stable isotope labeling HPLC-ESI(+)-MS/MS. Meso DEB treatment of DNA duplexes containing 5'-[1,7, NH(2)-(15)N(3),2-(13)C-G]GC-3'/3'-CCG-5' and 5'-GGC-3'/3'-CC[(15)N(3),2-(13)C-G]-5' trinucleotides gave rise to comparable numbers of 1,2-intrastrand and 1,3-interstrand bis-N7G-BD cross-links, while S,S DEB produced few intrastrand lesions. R,R-DEB treated DNA contained mostly 1,3-interstrand bis-N7G-BD, along with smaller amounts of 1,2-interstrand and 1,2-intrastrand adducts. The effects of DEB stereochemistry on its ability to form DNA-DNA cross-links may be rationalized by the spatial relationships between the epoxy alcohol side chains in stereoisomeric N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)-guanine adducts and their DNA environment. Different cross-linking specificities of DEB stereoisomers provide a likely structural basis for their distinct biological activities.
Domain 5 (D5) is absolutely required for all catalytic functions of group II introns. Here we describe the solution NMR structure, electrostatic calculations, and detailed magnesium ion-binding surface of D5 RNA from the Pylaiella littoralis large ribosomal RNA intron (D5-PL). The overall structure consists of a hairpin capped by a GNRA tetraloop. The stem is divided into lower and upper helices of 8 and 5 bp, respectively, separated by an internal bulge. The D5-PL internal bulge nucleotides stack into the helical junction, resulting in a coupling between the bulge A25 and the closing base pair (G8-C27) of the lower helix.Comparison of the D5-PL structure to previously reported related structures indicates that our structure is most similar, in the helical regions, to the crystal structure of D5 from yeast Ai5g (D5-Ai5g) and the NMR structure of the U6 snRNA stem-loop region. Our structure differs in many respects from both the NMR and X-ray structures of D5-Ai5g in the bulge region. Electrostatic calculations and NMR chemical shift perturbation analyses reveal magnesium ion-binding sites in the tetraloop, internal bulge, and the AGC triad in the lower stem. Our results suggest that the structure, electrostatic environment, and the magnesium ion-binding sites within the tetraloop, bulge, and triad regions are conserved features of the splicing machinery of both the group II introns and the spliceosome that are likely key for catalytic function.
Tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a chemical carcinogen thought to be involved in the initiation of lung cancer in smokers. NNK is metabolically activated to methylating and pyridyloxobutylating species that form promutagenic adducts with DNA nucleobases, e.g. O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-POB-dG). O(6)-POB-dG is a strongly mispairing DNA lesion capable of inducing both G-->A and G-->T base changes, suggesting its importance in NNK mutagenesis and carcinogenesis. Our earlier investigations have identified the ability of O(6)-POB-dG to hinder DNA digestion by snake venom phosphodiesterase (SVPDE), a 3'-exonuclease commonly used for DNA ladder sequencing and as a model enzyme to test nuclease sensitivity of anti-sense oligonucleotide drugs. We now extend our investigation to three other enzymes possessing 3'-exonuclease activity: bacteriophage T4 DNA polymerase, Escherichia coli DNA polymerase I, and E.coli exonuclease III. Our results indicate that, unlike SVPDE, 3'-exonuclease activities of these three enzymes are not blocked by O(6)-POB-dG lesion. Conformational analysis and molecular dynamics simulations of DNA containing O(6)-POB-dG suggest that the observed resistance of the O(6)-POB-dG lesion to SVPDE-catalyzed hydrolysis may result from the structural changes in the DNA strand induced by the O(6)-POB group, including C3'-endo sugar puckering and the loss of stacking interaction between the pyridyloxobutylated guanine and its flanking bases. In contrast, O(6)-methylguanine lesion used as a control does not induce similar structural changes in DNA and does not prevent its digestion by SVPDE.
Despite advances in modern medicine, contemporary society has experienced a series of epidemics and pandemics of noncommunicable, chronic diseases and communicable, infectious diseases [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.