An ASR system is built for the Continuous Kannada Speech Recognition. The acoustic and language models are created with the help of the Kaldi toolkit. The speech database is created with the native male and female Kannada speakers. The 75% of collected speech data is used for training the acoustic models and 25% of speech database is used for the system testing. The Performance of the system is presented interms of Word Error Rate (WER). Wavelet Packet Decomposition along with Mel filter bank is used to achieve feature extraction. The proposed feature extraction performs slightly better than the conventional features such as MFCC, PLP interms of WRA and WER under uncontrolled conditions. For the speech corpus collected in Kannada Language, theproposed features shows an improvement in WRA of 1.79% over baseline features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.