Eps15 homology domain (EHD) 1 enables membrane recycling by controlling the exit of internalized molecules from the endocytic recycling compartment (ERC) en route to the plasma membrane, similar to the role described for Rab11. However, no physical or functional connection between Rab11 and EHD-family proteins has been demonstrated yet, and the mode by which they coordinate their regulatory activity remains unknown. Here, we demonstrate that EHD1 and EHD3 (the closest EHD1 paralog), bind to the Rab11-effector Rab11-FIP2 via EH-NPF interactions. The EHD/Rab11-FIP2 associations are affected by the ability of the EHD proteins to bind nucleotides, and Rab11-FIP2 is recruited to EHD-containing membranes. These results are consistent with a coordinated role for EHD1 and Rab11-FIP2 in regulating exit from the ERC. However, because no function has been attributed to EHD3, the significance of its interaction with Rab11-FIP2 remained unclear. Surprisingly, loss of EHD3 expression prevented the delivery of internalized transferrin and early endosomal proteins to the ERC, an effect differing from that described upon EHD1 knockdown. Moreover, the subcellular localization of Rab11-FIP2 and endogenous Rab11 were altered upon EHD3 knockdown, with both proteins absent from the ERC and retained in the cell periphery. The results presented herein promote a coordinated role for EHD proteins and Rab11-FIP2 in mediating endocytic recycling and provide evidence for the function of EHD3 in early endosome to ERC transport. INTRODUCTIONInternalization of plasma membrane proteins is a critical event required for multiple physiological cellular processes and its regulation is mediated by a complex web of molecular components (Mellman, 1996;Conner and Schmid, 2003;Benmerah, 2004).Proteins at the plasma membrane are either internalized into clathrin-coated vesicles (Conner and Schmid, 2003;Benmerah, 2004), or they can be internalized independently of clathrin (Nichols and Lippincott-Schwartz, 2001;Naslavsky et al., 2004b). In either case, the internalized vesicles deliver their cargo to the endocytic pathway by fusing with early endosomes (Naslavsky et al., 2004b). Although many proteins are transported along the endosomal pathway to late endosomes and lysosomes where they ultimately undergo degradation, some endocytic receptors are returned to the plasma membrane where they continue to exert their physiological effects (Maxfield and McGraw, 2004).Recycling to the plasma membrane can occur either directly from the early endosome in a process that is not well understood (Sheff et al., 1999;Hao and Maxfield, 2000;Sheff et al., 2002;van Dam et al., 2002) or indirectly through a pericentriolar-localized organelle known as the endocytic recycling compartment (ERC) (Gruenberg and Maxfield, 1995;Maxfield and McGraw, 2004). This compartment is a condensed cellular region containing tubular membrane structures that emanate from the microtubule organizing center (Hopkins and Trowbridge, 1983;Yamashiro et al., 1984).Evidence suggests that endocytic rec...
Endocytic recycling of receptors and lipids occurs via a complex network of tubular and vesicular membranes. EHD1 is a key regulator of endocytosis and associates with tubular membranes to facilitate recycling. Although EHD proteins tubulate membranes in vitro, EHD1 primarily associates with preexisting tubules in vivo. How EHD1 is recruited to these tubular endosomes remains unclear. We have determined that the Rab8-interacting protein, MICAL-L1, associates with EHD1, with both proteins colocalizing to long tubular membranes, in vitro and in live cells. MICAL-L1 is a largely uncharacterized member of the MICAL-family of proteins that uniquely contains two asparagine-proline-phenylalanine motifs, sequences that typically interact with EH-domains. Our data show that the MICAL-L1 C-terminal coiled-coil region is necessary and sufficient for its localization to tubular membranes. Moreover, we provide unexpected evidence that endogenous MICAL-L1 can link both EHD1 and Rab8a to these structures, as its depletion leads to loss of the EHD1-Rab8a interaction and the absence of both of these proteins from the membrane tubules. Finally, we demonstrate that MICAL-L1 is essential for efficient endocytic recycling. These data implicate MICAL-L1 as an unusual type of Rab effector that regulates endocytic recycling by recruiting and linking EHD1 and Rab8a on membrane tubules.
SummaryAntigen presentation and microbial killing are critical arms of host defense that depend upon cargo trafficking into lysosomes. Yet, the molecular regulators of traffic into lysosomes are only partly understood. Here, using a lysosome-dependent immunological screen of a trafficking shRNA library, we identified the Arf-like GTPase Arl8b as a critical regulator of cargo delivery to lysosomes. Homotypic fusion and vacuole protein sorting (HOPS) complex members were identified as effectors of Arl8b and were dependent on Arl8b for recruitment to lysosomes, suggesting that Arl8b-HOPS plays a general role in directing traffic to lysosomes. Moreover, the formation of CD1 antigen-presenting complexes in lysosomes, their delivery to the plasma membrane, and phagosome-lysosome fusion were all markedly impaired in Arl8b silenced cells resulting in corresponding defects in T cell activation and microbial killing. Together, these results define Arl8b as a key regulator of lysosomal cellular and immunological functions.
RME-1/EHD1 family proteins are key residents of the recycling endosome required for endosome to plasma membrane transport in C. elegans and mammals. Recent studies suggest parallels of the RME-1/EHD proteins to the Dynamin GTPase superfamily of mechanochemical pinchases that promote membrane fission. Here we show that that endogenous C. elegans AMPH-1, the only C. elegans member of Amphiphysin/BIN1 family of BAR-domain proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1 deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 NPF (D/E) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1/Amphyphysin 2 in EHD1-regulated endocytic recycling. In vitro we find that the purified recombinant AMPH-1/RME-1 complexes produce short, coated, membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, likely through functions required for the production of cargo carriers exiting the recycling endosome for the cell surface.
The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.