Gram-negative pathogens like Enteropathogenic Escherichia coli (EPEC) utilize the type three secretion system (T3SS) to translocate various effector proteins that are needed to "hijack" the host system for pathogenic survival. Specialized T3SS chaperones inside bacterial cells stabilize these effector proteins and facilitate their translocation. CesT is a unique multi-cargo chaperone that interacts with and translocates ~10 different effector proteins. Here, we report the specific interaction between CesT and its key effector, NleH2, and explore the potential role of NleH2 as a kinase for CesT phosphorylation. First, we identified the chaperone-binding domain (CBD; 19-97aa) of NleH2, and mapped the specific interaction sites for both CesT and NleH2. The N-and Cterminal residues of the CBD interact with the dimeric interface of CesT. Further, we compared the CesT binding to NleH2, to that of another key effector Tir and with the global carbon regulator CsrA. Notably, the effectors have the binding regions at the β-sheet core and dimer interface of CesT, whereas the CsrA regulator interacts predominantly through the C-terminal region, which is found ~17 Å away from the effectors-binding sites. Next, we showed that NleH2 remains an active kinase even as a complex with CesT and is responsible for its autophosphorylation as well as phosphorylation of CesT at Tyr153. Collectively, our findings enhance the understanding of the role of multi-cargo chaperone CesT in orchestrating effector translocation through T3SS.
Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and are involved in iron oxidation, storage and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster along with the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the 4-fold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison to wild type and together explains the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.
Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and are involved in iron oxidation, storage and mineralization. Although several structures of human ferritin and bacterioferritin subunits have been resolved, there is still no complete structure that shows both the trapped Fe-biomineral cluster along with the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, an atomic-level description of the pathway and the biomineralization that occurs inside the cavity are lacking. Here, we report three cryo-EM structures of different states of the Streptomyces coelicolor bacterioferritin nanocage (i.e., apo, holo) at 3.4 Å to 4.6 Å resolution and the subunit crystal structure at 2.6 Å resolution. The holo forms show different stages of Fe-biomineral accumulation inside the nanocage and suggest the possibility of a different Fe biomineral accumulation process. The cryo-EM map shows connections between the Fe-biomineral cluster and residues such as Thr157 and Lys42 from the protein shell, which are involved in iron transport. Mutation and truncation of the bacterioferritin residues involved in these connections can significantly reduce iron binding as compared with wild type bacterioferritin. Moreover, S. coelicolor bacterioferritin binds to various DNA fragments, similar to Dps (DNA‐binding protein from starved cells) proteins. Collectively, our results represent a prototype for the ferritin nanocage, revealing insight into its biomineralization and the potential channel for ferritin-associated iron trafficking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.