Journal Pre-proof J o u r n a l P r e -p r o o f Acknowledgements: AbstractThe novel Coronavirus disease 2019 is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed.We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.
The novel Coronavirus disease 2019 (COVID-19) is an illness caused due to Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The World Health Organization (WHO) has declared this outbreak a global health emergency and as on April 24, 2020, it has spread to 213 countries, with 25,91,015 confirmed cases and 742,855 cases have been recovered from COVID-19. In this dreadful situation our team has already published an article in the Science of the Total Environment, which elaborates the various aspects of the SARS-CoV-2 infection. In this situation, it is imperative to understand the possible outcome of COVID-19 recovered patients and determine if they have any other detrimental illnesses by longitudinal analysis to safeguard their life in future. It is necessary
The pandemic of coronavirus disease 2019 (COVID-19) still remains on an upsurge trend. The second wave of this disease has led to panic in many countries, including India and some parts of the world suffering from the third wave. As there are no proper treatment options or remedies available for this deadly infection, supportive care equipment's such as oxygen cylinders, ventilators and heavy use of steroids play a vital role in the management of COVID-19. In the midst of this pandemic, the COVID-19 patients are acquiring secondary infections such as mucormycosis also known as black fungus disease. Mucormycosis is a serious, but rare opportunistic fungal infection that spreads rapidly, and hence prompt diagnosis and treatment are necessary to avoid high rate of mortality and morbidity rates. Mucormycosis is caused by the inhalation of its filamentous (hyphal form) fungi especially in the patients who are immunosuppressed. Recent studies have documented alarming number of COVID-19 patients with mucormycosis infection. Most of these patients had diabetes and were administered steroids for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and were consequently more prone to mucormycosis. Hence, the present review emphasizes mucormycosis and its related conditions, its mechanism in normal and COVID-19 affected individuals, influencing factors and challenges to overcome this black mold infection. Early identification and further investigation of this fungus will significantly reduce the severity of the disease and mortality rate in COVID-19 affected patients.
The unexpected pandemic set off by the novel coronavirus 2019 (COVID-19) has caused severe panic among people worldwide. COVID-19 has created havoc, and scientists and physicians are urged to test the efficiency and safety of drugs used to treat this disease. In such a pandemic situation, various steps have been taken by the government to control and prevent the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). This pandemic situation has forced scientists to rework strategies to combat infectious diseases through drugs, treatment, and control measures. COVID-19 treatment requires both limiting viral multiplication and neutralizing tissue damage induced by an inappropriate immune reaction. Currently, various diagnostic kits to test for COVID-19 are available, and repurposing therapeutics for COVID-19 has shown to be clinically effective. As the global demand for diagnostics and therapeutics continues to rise, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on specimens/samples, recent efficient diagnostics, and therapeutic approaches to control the disease and repurposed drugs mainly focusing on chloroquine/hydroxychloroquine and convalescent plasma (CP). More research is required for further understanding of the influence of diagnostics and therapeutic approaches to develop vaccines and drugs for COVID-19.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of novel coronavirus 2019 (COVID-19), has kept the globe in disquiets due to its severe life-threatening conditions. The most common symptoms of COVID-19 are fever, sore throat, and shortness of breath. According to the anecdotal reports from the health care workers, it has been suggested that the virus could reach the brain and can cause anosmia, hyposmia, hypogeusia, and hypopsia. Once the SARS-CoV-2 has entered the central nervous system (CNS), it can either exit in an inactive form in the tissues or may lead to neuroinflammation. Here, we aim to discuss the chronic infection of the olfactory bulb region of the brain by SARS-CoV-2 and how this could affect the nearby residing neurons in the host. We further review the probable cellular mechanism and activation of the microglia 1 phenotype possibly leading to various neurodegenerative disorders. In conclusion, SARS-CoV-2 might probably infect the olfactory bulb neuron enervating the nasal epithelium accessing the CNS and might cause neurodegenerative diseases in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.