Eriophorum vaginatum is a tussock‐forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65–70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38′N, 149°36′W) where half were warmed using open‐top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.
As global climate change progresses, the United States (US) is expected to experience warmer temperatures as well as more frequent and severe extreme weather events, including heat waves, hurricanes, and wildfires. Each year, these events cost dozens of lives and do billions of dollars' worth of damage, but there has been limited research on how they influence human decisions about migration. Are people moving toward or away from areas most at risk from these climate threats? Here, we examine recent (2010–2020) trends in human migration across the US in relation to features of the natural landscape and climate, as well as frequencies of various natural hazards. Controlling for socioeconomic and environmental factors, we found that people have moved away from areas most affected by heat waves and hurricanes, but toward areas most affected by wildfires. This relationship may suggest that, for many, the dangers of wildfires do not yet outweigh the perceived benefits of life in fire-prone areas. We also found that people have been moving toward metropolitan areas with relatively hot summers, a dangerous public health trend if mean and maximum temperatures continue to rise, as projected in most climate scenarios. These results have implications for policymakers and planners as they prepare strategies to mitigate climate change and natural hazards in areas attracting migrants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.