With the advances in sequencing technologies, a huge amount of biological data is extracted nowadays. Analyzing this amount of data is beyond the ability of human beings, creating a splendid opportunity for machine learning methods to grow. The methods, however, are practical only when the sequences are converted into feature vectors. Many tools target this task including iLearnPlus, a Python-based tool which supports a rich set of features. In this paper, we propose a holistic tool that extracts features from biological sequences (i.e. DNA, RNA and Protein). These features are the inputs to machine learning models that predict properties, structures or functions of the input sequences. Our tool not only supports all features in iLearnPlus but also 30 additional features which exist in the literature. Moreover, our tool is based on R language which makes an alternative for bioinformaticians to transform sequences into feature vectors. We have compared the conversion time of our tool with that of iLearnPlus: we transform the sequences much faster. We convert small nucleotides by a median of 2.8X faster, while we outperform iLearnPlus by a median of 6.3X for large sequences. Finally, in amino acids, our tool achieves a median speedup of 23.9X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.