Layered LiMO2 (M = Ni, Co, Mn, and Al mixture) cathode materials used for Li‐ion batteries are reputed to be highly reactive through their surface, where the chemistry changes rapidly when exposed to ambient air. However, conventional electron/spectroscopy‐based techniques or thermogravimetric analysis fails to capture the underlying atom‐scale chemistry of vulnerable Li species. To study the evolution of the surface composition at the atomic scale, cryogenic atom probe tomography is used herein and the surface species formed during exposure of a LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material to air are probed. The compositional analysis evidences the formation of Li2CO3. Site‐specific examination from a cracked region of an NMC811 particle also reveals the predominant presence of Li2CO3. These insights will help to design improved protocols for cathode synthesis and cell assembly, as well as critical knowledge for cathode degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.