The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l "1 ), phytase (0.68 U ml "1 ), chitinase (6.2 U ml ) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes -isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinaseindependent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and 1 H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33 %) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.
Legumes develop symbiotic relationships with Rhizobium by a complex exchange of signals. Despite the high specificity between symbiotic partners, the presence of non-rhizobial bacteria in root nodules has been reported. To investigate how these rhizobacteria enter root nodules, fluorescently tagged Pseudomonas fluorescens and Klebsiella pneumoniae were co-inoculated with host-nodulating Ensifer adhaerens to Vigna radiata seedlings and root hair infection was monitored using confocal microscopy at 5 days post inoculation. Pseudomonas fluorescens and K. pneumoniae invaded the root hair only when co-inoculated with E. adhaerens. Recovery of inoculated tagged strains and confirmation through CLSM and 16S rRNA gene sequencing confirmed that the test rhizobacteria occupied nodules. We hereby report with the help of confocal microscopy that rhizobacteria migrate along the length of host-nodulating rhizobial strain and become localized in root nodules. We further report isolation of eight non-rhizobial bacterial genera, predominantly Bacillus spp. and Paenibacillus spp., from nodules of field-grown V. radiata.
The mode of succinate mediated repression of mineral phosphate solubilization and the role of repressor in suppressing phosphate solubilization phenotype of two free-living nitrogen fixing Klebsiella pneumoniae strains was studied. Organic acid mediated mineral phosphate solubilization phenotype of oxalic acid producing Klebsiella pneumoniae SM6 and SM11 were transcriptionally repressed by IclR in presence of succinate as carbon source. Oxalic acid production and expression of genes of the glyoxylate shunt (aceBAK) was found only in glucose but not in succinate- and glucose+succinate-grown cells. IclR, repressor of aceBAK operon, was inactivated using an allelic exchange system resulting in derepressed mineral phosphate solubilization phenotype through constitutive expression of the glyoxylate shunt. Insertional inactivation of iclR resulted in increased activity of the glyoxylate shunt enzymes even in succinate-grown cells. An augmented phosphate solubilization up to 54 and 59% soluble phosphate release was attained in glucose+succinate-grown SM6Δ and SM11Δ strains respectively, compared to glucose-grown cells, whereas phosphate solubilization was absent or negligible in wildtype cells grown in glucose+succinate. Both wildtype and iclR deletion strains showed similar indole-3-acetic acid production. Wheat seeds inoculated with wildtype SM6 and SM11 improved both root and shoot length by 1.2 fold. However, iclR deletion SM6Δ and SM11Δ strains increased root and shoot length by 1.5 and 1.4 folds, respectively, compared to uninoculated controls. The repressor inactivated phosphate solubilizers better served the purpose of constitutive phosphate solubilization in pot experiments, where presence of other carbon sources (e.g., succinate) might repress mineral phosphate solubilization phenotype of wildtype strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.