To enable the development of improved tandem mass spectrometry based methods for selective proteome analysis, the mechanisms, product ion structures, and other factors influencing the gas-phase fragmentation reactions of methionine side-chain derivatized "fixed-charge" phenacylsulfonium ion containing peptide ions have been examined. Dissociation of these peptide ions results in the exclusive characteristic loss of the derivatized side chain, thereby enabling their selective identification. The resultant product ion(s) are then subjected to further dissociation to obtain sequence information for subsequent protein identification. Molecular orbital calculations (at the B3LYP/6-31 ϩ G (d,p) level of theory) performed on a simple peptide model, together with experimental evidence obtained by multistage dissociation of a regioselectively deuterated methionine derivatized sulfonium ion containing tryptic peptide, indicate that fragmentation of the fixed charge containing peptide ions occurs via S N 2 reactions involving the N-and C-terminal amide bonds adjacent to the methionine side chain, resulting in the formation of stable cyclic five-and six-membered iminohydrofuran and oxazine product ions, respectively. These studies further indicate that the rings formed via these neighboring group reactions are stable to further dissociation by MS 3 . As a consequence, the formation of b-or y-type sequence ions are "skipped" at the site of cyclization. Despite this, complete sequence information is still obtained because of the presence of both cyclic
The multistage mass spectrometric (MS/MS and MS 3 ) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of parasubstituted phenacyl bromide (XBr where X ¼ CH 2 COC 6 H 4 R, and R ¼ -COOH, -COOCH 3 , -H, -CH 3 and -CH 2 CH 3 ) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M R ) and multiply) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/ 6-31RGÃÃ level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. R2H]3R precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.
Pin1 is a peptidyl-prolyl isomerase (PPIase) that plays a central role in eukaryotic cell cycle regulation, making this protein an interesting target for cancer therapy. Pin1 exhibits high specificity for substrates where proline is preceded by phosphoserine or phosphothreonine. The protein comprises an N-terminal WW (tryptophan–tryptophan) domain and a C-terminal PPIase domain. The cyclic peptide [CRYPEVEIC] (square brackets are used to denote the cyclic structure) represents a lead compound for a new class of nonphosphorylated Pin1 inhibitors. Unfortunately, it has not been possible thus far to characterize the Pin1–[CRYPEVEIC] complex by X-ray crystallography. Thus, the exact binding mode remains unknown. The current work employs hydrogen/deuterium exchange mass spectrometry for gaining insights into the Pin1–[CRYPEVEIC] interactions. The WW domain shows extensive conformational dynamics, both in the presence and in the absence of ligand. In contrast, profound changes in deuteration kinetics are observed in the PPIase domain after the addition of [CRYPEVEIC]. The secondary structure elements β2, α3, and α4 exhibit markedly reduced deuteration, consistent with their postulated involvement in ligand binding. Unexpectedly, [CRYPEVEIC] destabilizes the range of residues 61–86, a segment that comprises basic side chains that normally interact with the substrate phosphate. This destabilization is likely caused by steric clashes with Y3 or E5 of the inhibitor. Ligand-induced destabilization has previously been reported for a few other proteins, but effects of this type are not very common. Our findings suggest that future crystallization trials on Pin1 variants deleted for residues in the 61–86 range might provide a path towards high-resolution X-ray structures of Pin1 bound to cyclic peptide inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.