Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.
Canine diabetes has been considered a potential model of human type 1 diabetes (T1D), however the detection of autoantibodies common in humans with T1D in affected dogs is inconsistent. The aim of this study was to compare autoantibody responses in diabetic and healthy control dogs using a novel nucleic acid programmable protein array (NAPPA) platform. We performed a cross-sectional study of autoantibody profiles of 30 diabetic and 30 healthy control dogs of various breeds. Seventeen hundred human proteins related to the pancreas or diabetes were displayed on NAPPA arrays and interrogated with canine sera. The median normalized intensity (MNI) for each protein was calculated, and results were compared between groups to identify candidate autoantibodies. At a specificity of 90%, six autoantibodies had sensitivity greater than 10% (range 13–20%) for distinguishing diabetic and control groups. A combination of three antibodies (anti-KANK2, anti-GLI1, anti-SUMO2) resulted in a sensitivity of 37% (95% confidence interval (CI) 0.17–0.67%) at 90% specificity and an area under the receiver operating characteristics curve of 0.66 (95% CI 0.52–0.80). While this study does not provide conclusive support for autoimmunity as an underlying cause of diabetes in dogs, future studies should consider the use of canine specific proteins in larger numbers of dogs of breeds at high risk for diabetes.
BACKGROUND The healthcare burden of inflammatory bowel disease (IBD) is rising globally and there are limited non-invasive biomarkers for accurate and early diagnosis. AIM To understand the important role that intestinal microbiota play in IBD pathogenesis and identify anti-microbial antibody signatures that benefit clinical management of IBD patients. METHODS We performed serological profiling of 100 Crohn’s disease (CD) patients, 100 ulcerative colitis (UC) patients and 100 healthy controls against 1173 bacterial and 397 viral proteins from 50 bacteria and 33 viruses on protein microarrays. The study subjects were randomly divided into discovery ( n = 150) and validation ( n = 150) sets. Statistical analysis was performed using R packages. RESULTS Anti-bacterial antibody responses showed greater differential prevalence among the three subject groups than anti-viral antibody responses. We identified novel antibodies against the antigens of Bacteroidetes vulgatus (BVU_0562) and Streptococcus pneumoniae (SP_1992) showing higher prevalence in CD patients relative to healthy controls. We also identified antibodies against the antigen of Streptococcus pyogenes (SPy_2009) showing higher prevalence in healthy controls relative to UC patients. Using these novel antibodies, we built biomarker panels with area under the curve (AUC) of 0.81, 0.87, and 0.82 distinguishing CD vs control, UC vs control, and CD vs UC, respectively. Subgroup analysis revealed that penetrating CD behavior, colonic CD location, CD patients with a history of surgery, and extensive UC exhibited highest antibody prevalence among all patients. We demonstrated that autoantibodies and anti-microbial antibodies in CD patients had minimal correlation. CONCLUSION We have identified antibody signatures for CD and UC using a comprehensive analysis of anti-microbial antibody response in IBD. These antibodies and the source microorganisms of their target antigens improve our understanding of the role of specific microorganisms in IBD pathogenesis and, after future validation, should aid early and accurate diagnosis of IBD.
Background Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and nonatrophic gastritis (NAG) controls. Methods We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with C 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). Results Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in [ 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p \ 0.001], anti-HP0547/CagA [4.6, p \ 0.001], anti-HP0596/Tipa [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/ Tipa [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001).Conclusions Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.