The concentration of transferrin mRNA was evaluated during pregnancy and lactation in rabbit mammary gland and liver using northern blot and dot blot assays. Transferrin mRNA was present in the virgin rabbit mammary gland and its concentration increased as pregnancy proceeded, with a major enhancement after day 15. A high concentration was reached 3 days after parturition, with no additional increase during lactation and with a marked decline after weaning. During the same period, the concentration of transferrin mRNA showed only a very weak variation in liver. This mRNA was six times more abundant in mammary gland than in liver of lactating rabbit. The accumulation of transferrin mRNA in the mammary gland was concomitant with the accumulation of alpha s1-, beta-, kappa-casein and WAP (whey acidic protein) mRNAs. The concentration of glyceraldehyde 3-phosphate dehydrogenase mRNA, taken as a non-inducible control mRNA, declined progressively during pregnancy to reach its lower level in lactation. These observations suggest that casein, WAP and transferrin mRNAs are subjected to a similar control mechanism in vivo, at least in the second half of pregnancy and during lactation. Experiments carried out in vitro using isolated rabbit epithelial mammary cells cultured on collagen I gel indicated that transferrin mRNA was abundant and only weakly inducible by the lactogenic hormones insulin, cortisol and prolactin, as opposed to caseins and WAP mRNAs. R5020, an analogue of progesterone, inhibited at most very slightly the accumulation of alpha s1-casein mRNA in the presence of prolactin and it did not reduce the expression of transferrin gene.(ABSTRACT TRUNCATED AT 250 WORDS)
The promoter regions of both the interferon regulatory factor (IRF1) and p53 antioncogenes contain a previously unidentified sequence denoted IRF1 p53 common sequence (IPCS), which markedly increases the transcriptional activity of a reporter gene placed under the control of an heterologous promoter in transfected U937 cells. In contrast, transfection of U937 cells with reporter vectors containing p53 and IRF1 promoters with mutated IPCS sites resulted in a 4-fold reduction in the constitutive expression of those two genes. The transcriptional activity of IPCS is strictly correlated with the binding of a novel nuclear factor, IPCS-binding factor (IPCS-BF). IPCS-BF, which is composed of a single polypeptide of 26 kDa, is present constitutively in nuclear extracts of both U937 cells and peripheral blood mononuclear cells from healthy donors. The finding that the pattern of binding of IPCS-BF to the IPCS is unlike that of any known transcription factor and that the IPCS sequence does not exhibit any significant homology with any known binding site present in the data base, strongly suggest that IPCS-BF is a novel transcription factor which, by virtue of this ability to regulate the expression of the p53 and IRF1 genes, could play a central role in the control of cell proliferation and/or apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.