Fetal growth restriction (FGR) is a major complication of prenatal ischemic/hypoxic exposure and affects 5%-10% of pregnancies. It causes various disorders, including neurodevelopmental disabilities due to chronic hypoxia, circulatory failure, and malnutrition via the placenta, and there is no established treatment. Therefore, the development of treatments is an urgent task. We aimed to develop a new FGR rat model with a gradual restrictive load of uterus/placental blood flow and to evaluate the treatment effect of the administration of umbilical cord-derived mesenchymal stromal cells (UC-MSCs). To create the FGR rat model, we used ameroid constrictors that had titanium on the outer wall and were composed of C-shaped casein with a notch and center hole inside that gradually narrowed upon absorbing water. The ameroid constrictors were attached to bilateral ovarian/uterine arteries on the 17th day of pregnancy to induce chronic mild ischemia, which led to FGR with over 20% bodyweight reduction. After the intravenous administration of 1 × 10 5 UC-MSCs, we confirmed a significant improvement in the UC-MSC group in a negative geotaxis test at 1 week after birth and a rotarod treadmill test at 5 months old. In the immunobiological evaluation, the total number of neurons counted via the stereological counting method was significantly higher in the UC-MSC group than in the vehicle-treated group. These results indicate that the UC-MSCs exerted a treatment effect for neurological impairment in the FGR rats.
Fetal growth restriction (FGR), followed by postnatal early catch-up growth, is associated with an increased risk of metabolic dysfunction, including type 2 diabetes in humans. This study aims to determine the effects of FGR and early catch-up growth after birth on the pathogenesis of type 2 diabetes, with particular attention to glucose tolerance, pancreatic islet morphology, and fibrosis, and to elucidate its mechanism using proteomics analysis. The FGR rat model was made by inducing mild intrauterine hypoperfusion using ameroid constrictors (ACs). On day 17 of pregnancy, ACs were affixed to the uterine and ovarian arteries bilaterally, causing a 20.9% reduction in birth weight compared to sham pups. On postnatal day 4 (P4), the pups were assigned to either the good nutrition (GN) groups with 5 pups per dam to ensure postnatal catch-up growth or poor nutrition groups with 15 pups per dam to maintain lower body weight. After weaning, all pups were fed regular chow food ad libitum (P21). Rats in both FGR groups developed glucose intolerance; however, male rats in the FGR good nutrition (FGR-GN) group also developed hypertriglyceridemia and dysmorphic pancreatic islets with fibrosis. A comprehensive and functional analysis of proteins expressed in the pancreas showed that FGR, followed by early catch-up growth, severely aggravated cell adhesion-related protein expression in male offspring. Thus, FGR and early catch-up growth caused pancreatic islet morphological abnormalities and fibrosis associated with the disturbance of cell adhesion-related protein expressions. These changes likely induce glucose intolerance and dyslipidemia in male rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.