Automatically recognizing the damaged surface parts of cars can noticeably diminish the cost of processing premium assertion that leads to providing contentment for vehicle users. This recognition task can be conducted using some machine learning (ML) strategies. Deep learning (DL) models as subsets of ML have indicated remarkable potential in object detection and recognition tasks. In this study, an automated recognition of the damaged surface parts of cars in the real scene is suggested that is based on a two-path convolutional neural network (CNN). Our strategy utilizes a ResNet-50 at the beginning of each route to explore low-level features efficiently. Moreover, we proposed new mReLU and inception blocks in each route that are responsible for extracting high-level visual features. The experimental results proved the suggested model obtained high performance in comparison to some state-of-the-art frameworks.
In the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.