Purpose. The present study is aimed at predicting the physician's specialty based on the most frequent two medications prescribed simultaneously. The results of this study could be utilized in the imputation of the missing data in similar databases. Patients and Methods. The research is done through the KAy-means for MIxed LArge datasets (KAMILA) clustering and random forest (RF) model. The data used in the study were retrieved from outpatients' prescriptions in the second populous province of Iran (Khorasan Razavi) from April 2015 to March 2017. Results. The main findings of the study represent the importance of each combination in predicting the specialty. The final results showed that the combination of amoxicillin-metronidazole has the highest importance in making an accurate prediction. The findings are provided in a user-friendly R-shiny web application, which can be applied to any medical prescription database. Conclusion. Nowadays, a huge amount of data is produced in the field of medical prescriptions, which a significant section of that is missing in the specialty. Thus, imputing the missing variables can lead to valuable results for planning a medication with higher quality, improving healthcare quality, and decreasing expenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.