Background: Surveillance for healthcare-associated infections such as healthcareassociated urinary tract infections (HA-UTI) is important for directing resources and evaluating interventions. However, traditional surveillance methods are resourceintensive and subject to bias. Aim: To develop and validate a fully automated surveillance algorithm for HA-UTI using electronic health record (EHR) data. Methods: Five algorithms were developed using EHR data from 2979 admissions at Karolinska University Hospital from 2010 to 2011: (1) positive urine culture (UCx); (2) positive UCx þ UTI codes (International Statistical Classification of Diseases and Related Health Problems, 10 th revision); (3) positive UCx þ UTI-specific antibiotics; (4) positive UCx þ fever and/or UTI symptoms; (5) algorithm 4 with negation for fever without UTI symptoms. Natural language processing (NLP) was used for processing free-text medical notes. The algorithms were validated in 1258 potential UTI episodes from January to March 2012 and results extrapolated to all UTI episodes within this period (N ¼ 16,712). The reference standard for HA-UTIs was manual record review according to the European Centre for Disease Prevention and Control (and US Centers for Disease Control and Prevention) definitions by trained healthcare personnel. Findings: Of the 1258 UTI episodes, 163 fulfilled the ECDC HA-UTI definition and the algorithms classified 391, 150, 189, 194, and 153 UTI episodes, respectively, as HA-UTI. Algorithms 1, 2, and 3 had insufficient performances. Algorithm 4 achieved better performance and algorithm 5 performed best for surveillance purposes with sensitivity 0.667 (95% confidence interval: 0.594e0.733), specificity 0.997 (0.996e0.998), positive predictive value 0.719 (0.624e0.807) and negative predictive value 0.997 (0.996e0.997).
Internet of Medical Things (IoMT) provides an excellent opportunity to investigate better automatic medical decision support tools with the effective integration of various medical equipment and associated data. This study explores two such medical decision-making tasks, namely COVID-19 detection and lung area segmentation detection, using chest radiography images. We also explore different cutting-edge machine learning techniques, such as federated learning, semi-supervised learning, transfer learning, and multi-task learning to explore the issue. To analyze the applicability of computationally less capable edge devices in the IoMT system, we report the results using Raspberry Pi devices as accuracy, precision, recall, Fscore for COVID-19 detection, and average dice score for lung segmentation detection tasks. We also publish the results obtained through server-centric simulation for comparison. The results show that Raspberry Pi-centric devices provide better performance in lung segmentation detection, and server-centric experiments provide better results in COVID-19 detection. We also discuss the IoMT application-centric settings, utilizing medical data and decision support systems, and posit that such a system could benefit all the stakeholders in the IoMT domain.
Sepsis is a life-threatening complication to infections, and early treatment is key for survival. Symptoms of sepsis are difficult to recognize, but prediction models using data from electronic health records (EHRs) can facilitate early detection and intervention. Recently, deep learning architectures have been proposed for the early prediction of sepsis. However, most efforts rely on high-resolution data from intensive care units (ICUs). Prediction of sepsis in the non-ICU setting, where hospitalization periods vary greatly in length and data is more sparse, is not as well studied. It is also not clear how to learn effectively from longitudinal EHR data, which can be represented as a sequence of time windows. In this article, we evaluate the use of an LSTM network for early prediction of sepsis according to Sepsis-3 criteria in a general hospital population. An empirical investigation using six different time window sizes is conducted. The best model uses a two-hour window and assumes data is missing not at random, clearly outperforming scoring systems commonly used in healthcare today. It is concluded that the size of the time window has a considerable impact on predictive performance when learning from heterogeneous sequences of sparse medical data for early prediction of sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.