Digital image authentication is an extremely significant concern for the digital revolution, as it is easy to tamper with any image. In the last few decades, it has been an urgent concern for researchers to ensure the authenticity of digital images. Based on the desired applications, several suitable watermarking techniques have been developed to mitigate this concern. However, it is tough to achieve a watermarking system that is simultaneously robust and secure. This paper gives details of standard watermarking system frameworks and lists some standard requirements that are used in designing watermarking techniques for several distinct applications. The current trends of digital image watermarking techniques are also reviewed in order to find the state-of-the-art methods and their limitations. Some conventional attacks are discussed, and future research directions are given.
Digital image watermarking is an attractive research area since it protects the multimedia data from unauthorized access. For designing an efficient and robust digital image watermarking system, the trade-off among imperceptibility, robustness, capacity, and security must be maintained. Various studies regarding this concern have been performed to ensure these requirements by hybridizing different domains, such as spatial and transform domains. In this paper, we have presented an analytical study of the existing hybrid digital image watermarking methods. At first, we have given a standard framework for designing a hybrid method that ensures the basic design requirements of watermarking for various applications. After a brief literature review, we compared and analyzed the complexity of several existing hybrid methods in a tabular form. The limitations and applications of these methods are also highlighted. Finally, we summarized the challenges of the existing methods and concluded the study by giving future research directions.
Data transmission over the Internet and the personal network has been risen day by day due to the advancement of multimedia technology. Hence, it is today’s prime concern to protect the data from unauthorized access and encrypt the multimedia element as they are stored on the web servers and transmitted over the networks. Therefore, multimedia data encryption is essential. But, the multimedia encryption algorithm is complex to implement as it requires more time and memory space. For this reason, the lightweight image encryption algorithm gains popularity that requires less memory and less time along with low power or energy and provides supreme security for limited devices. In this study, we have studied the chaotic-based lightweight image encryption method. At first, we have presented a standard framework and algorithm based on two chaotic maps such as Arnold and logistic for lightweight image encryption and performed some experiments. We have analyzed different groups of images such as miscellaneous, medical, underwater, and texture. Experimentations have provided the largest entropy 7.9920 for medical image (chest X-ray), large key space 2m×m×8, and average encryption and decryption times are 3.9771 s and 3.1447 s, respectively. Besides, we have found an equal distribution of pixels and less correlation coefficients among adjacent pixels of the encrypted image. These criteria indicate an efficient image encryption method. Also, our method is efficient and less complex than the existing state-of-the-art methods.
Robust as well as secure image watermarking is capable of providing a promising solution in many copyright protection applications. In this paper, an improved image watermarking scheme based on DFT with a decomposition algorithm is proposed. First, two dimensional (2D) Fast Fourier Transform (FFT) is applied to the host image, and then its singular value decomposition (SVD) is performed. Second, the watermark image is encrypted with a chaotic map for ensuring security against unauthorized detection, and then its 2D FFT and SVD are also performed. Third, the singular values of the watermark image are embedded into the singular values of the host image. The hybridization of DFT with SVD ensures the increasing performance of the watermarking system from the perspectives of visual distortion and robustness. Experimental results show that our proposed method is highly robust and also imperceptible with a large watermark size and increased security than the classical DFT-based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.